【題目】如圖,已知△ABC中,邊AB、AC的垂直平分線分別交BCEF,若∠EAF90°,AF3AE4

1)求邊BC的長(zhǎng);(2)求出∠BAC的度數(shù).

【答案】1BC12;(2)∠BAC135°.

【解析】

1)根據(jù)勾股定理求出EF,根據(jù)線段垂直平分線的性質(zhì)得到EAEB,FAFC,結(jié)合圖形計(jì)算,得到答案;

2)根據(jù)等腰三角形的性質(zhì)得到∠EAB∠B,∠FAC∠C,根據(jù)三角形內(nèi)角和定理計(jì)算即可.

解:(1)由勾股定理得,EF5,

AB、AC的垂直平分線分別交BCE、F,

∴EAEB,FAFC,

∴BCBE+EF+FCAE+EF+AF12;

2∵EAEB,FAFC,

∴∠EAB∠B,∠FAC∠C,

由三角形內(nèi)角和定理得,∠EAB+∠B+∠EAF+∠FAC+∠C180°

∴∠B+∠C45°,

∴∠BAC180°∠B∠C135°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線軸分別交于原點(diǎn)和點(diǎn),與對(duì)稱軸交于點(diǎn).矩形的邊軸正半軸上,且,邊,與拋物線分別交于點(diǎn).當(dāng)矩形沿軸正方向平移,點(diǎn),位于對(duì)稱軸的同側(cè)時(shí),連接,此時(shí),四邊形的面積記為;點(diǎn),位于對(duì)稱軸的兩側(cè)時(shí),連接,,此時(shí)五邊形的面積記為.將點(diǎn)與點(diǎn)重合的位置作為矩形平移的起點(diǎn),設(shè)矩形平移的長(zhǎng)度為.

(1)求出這條拋物線的表達(dá)式;

(2)當(dāng)時(shí),求的值;

(3)當(dāng)矩形沿著軸的正方向平移時(shí),求關(guān)于的函數(shù)表達(dá)式,并求出為何值時(shí),有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)AB、CD均在坐標(biāo)軸上,ABCD

1)求證:∠ABO+CDO90°;

2)如圖2,BM平分∠ABOx軸于點(diǎn)M,DN平分∠CDOy軸于點(diǎn)N,求∠BMO+OND的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)第1次用39萬(wàn)元購(gòu)進(jìn)AB兩種商品,銷售完后獲得利潤(rùn)6萬(wàn)元,它們的進(jìn)價(jià)和售價(jià)如下表:(總利潤(rùn)=單件利潤(rùn)×銷售量)

(1)該商場(chǎng)第1次購(gòu)進(jìn)A、B兩種商品各多少件?

(2)商場(chǎng)第2次以原價(jià)購(gòu)進(jìn)A、B兩種商品,購(gòu)進(jìn)A商品的件數(shù)不變,而購(gòu)進(jìn)B商品的件數(shù)是第1次的2倍,A商品按原價(jià)銷售,而B商品打折銷售,若兩種商品銷售完畢,要使得第2次經(jīng)營(yíng)活動(dòng)獲得利潤(rùn)等于54000元,則B種商品是打幾折銷售的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正整數(shù)12018按一定規(guī)律排列如下表:

平移表中帶陰影的方框,方框中三個(gè)數(shù)的和可能是( 。

A. 2019 B. 2018 C. 2016 D. 2013

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.在ABC中,∠ACB=60°,AC=1,D是邊AB的中點(diǎn),E是邊BC上一點(diǎn).若DE平分ABC的周長(zhǎng),則DE的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB的端點(diǎn)坐標(biāo)為A(﹣12),B3,1),若直線ykx2與線段AB有交點(diǎn),則k的值可能是( 。

A. 3B. 2C. 1D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)如圖,△A1B1C1△ABC向右平移四個(gè)單位長(zhǎng)度后得到的,且三個(gè)頂點(diǎn)的坐標(biāo)分別為A111),B14,2),C13,4).

1)請(qǐng)畫出△ABC,并寫出點(diǎn)AB、C的坐標(biāo);

2)求出△AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣4,0),B(2,0),與y軸交于點(diǎn)C(0,4),線段BC的中垂線與對(duì)稱軸l交于點(diǎn)D,與x軸交于點(diǎn)F,與BC交于點(diǎn)E,對(duì)稱軸lx軸交于點(diǎn)H.

(1)求拋物線的函數(shù)表達(dá)式;

(2)求點(diǎn)D的坐標(biāo);

(3)點(diǎn)Px軸上一點(diǎn),⊙P與直線BC相切于點(diǎn)Q,與直線DE相切于點(diǎn)R.求點(diǎn)P的坐標(biāo);

(4)點(diǎn)Mx軸上方拋物線上的點(diǎn),在對(duì)稱軸l上是否存在一點(diǎn)N,使得以點(diǎn)D,P,M.N為頂點(diǎn)的四邊形是平行四邊形?若存在,則直接寫出N點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案