【題目】如圖,已知△ABC中,邊AB、AC的垂直平分線分別交BC于E、F,若∠EAF=90°,AF=3,AE=4.
(1)求邊BC的長(zhǎng);(2)求出∠BAC的度數(shù).
【答案】(1)BC=12;(2)∠BAC=135°.
【解析】
(1)根據(jù)勾股定理求出EF,根據(jù)線段垂直平分線的性質(zhì)得到EA=EB,FA=FC,結(jié)合圖形計(jì)算,得到答案;
(2)根據(jù)等腰三角形的性質(zhì)得到∠EAB=∠B,∠FAC=∠C,根據(jù)三角形內(nèi)角和定理計(jì)算即可.
解:(1)由勾股定理得,EF===5,
∵邊AB、AC的垂直平分線分別交BC于E、F,
∴EA=EB,FA=FC,
∴BC=BE+EF+FC=AE+EF+AF=12;
(2)∵EA=EB,FA=FC,
∴∠EAB=∠B,∠FAC=∠C,
由三角形內(nèi)角和定理得,∠EAB+∠B+∠EAF+∠FAC+∠C=180°,
∴∠B+∠C=45°,
∴∠BAC=180°﹣∠B﹣∠C=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與軸分別交于原點(diǎn)和點(diǎn),與對(duì)稱軸交于點(diǎn).矩形的邊在軸正半軸上,且,邊,與拋物線分別交于點(diǎn),.當(dāng)矩形沿軸正方向平移,點(diǎn),位于對(duì)稱軸的同側(cè)時(shí),連接,此時(shí),四邊形的面積記為;點(diǎn),位于對(duì)稱軸的兩側(cè)時(shí),連接,,此時(shí)五邊形的面積記為.將點(diǎn)與點(diǎn)重合的位置作為矩形平移的起點(diǎn),設(shè)矩形平移的長(zhǎng)度為.
(1)求出這條拋物線的表達(dá)式;
(2)當(dāng)時(shí),求的值;
(3)當(dāng)矩形沿著軸的正方向平移時(shí),求關(guān)于的函數(shù)表達(dá)式,并求出為何值時(shí),有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、B、C、D均在坐標(biāo)軸上,AB∥CD.
(1)求證:∠ABO+∠CDO=90°;
(2)如圖2,BM平分∠ABO交x軸于點(diǎn)M,DN平分∠CDO交y軸于點(diǎn)N,求∠BMO+∠OND的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)第1次用39萬(wàn)元購(gòu)進(jìn)A、B兩種商品,銷售完后獲得利潤(rùn)6萬(wàn)元,它們的進(jìn)價(jià)和售價(jià)如下表:(總利潤(rùn)=單件利潤(rùn)×銷售量)
(1)該商場(chǎng)第1次購(gòu)進(jìn)A、B兩種商品各多少件?
(2)商場(chǎng)第2次以原價(jià)購(gòu)進(jìn)A、B兩種商品,購(gòu)進(jìn)A商品的件數(shù)不變,而購(gòu)進(jìn)B商品的件數(shù)是第1次的2倍,A商品按原價(jià)銷售,而B商品打折銷售,若兩種商品銷售完畢,要使得第2次經(jīng)營(yíng)活動(dòng)獲得利潤(rùn)等于54000元,則B種商品是打幾折銷售的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正整數(shù)1至2018按一定規(guī)律排列如下表:
平移表中帶陰影的方框,方框中三個(gè)數(shù)的和可能是( 。
A. 2019 B. 2018 C. 2016 D. 2013
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.在△ABC中,∠ACB=60°,AC=1,D是邊AB的中點(diǎn),E是邊BC上一點(diǎn).若DE平分△ABC的周長(zhǎng),則DE的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB的端點(diǎn)坐標(biāo)為A(﹣1,2),B(3,1),若直線y=kx﹣2與線段AB有交點(diǎn),則k的值可能是( 。
A. ﹣3B. ﹣2C. ﹣1D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖,△A1B1C1是△ABC向右平移四個(gè)單位長(zhǎng)度后得到的,且三個(gè)頂點(diǎn)的坐標(biāo)分別為A1(1,1),B1(4,2),C1(3,4).
(1)請(qǐng)畫出△ABC,并寫出點(diǎn)A、B、C的坐標(biāo);
(2)求出△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣4,0),B(2,0),與y軸交于點(diǎn)C(0,4),線段BC的中垂線與對(duì)稱軸l交于點(diǎn)D,與x軸交于點(diǎn)F,與BC交于點(diǎn)E,對(duì)稱軸l與x軸交于點(diǎn)H.
(1)求拋物線的函數(shù)表達(dá)式;
(2)求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P為x軸上一點(diǎn),⊙P與直線BC相切于點(diǎn)Q,與直線DE相切于點(diǎn)R.求點(diǎn)P的坐標(biāo);
(4)點(diǎn)M為x軸上方拋物線上的點(diǎn),在對(duì)稱軸l上是否存在一點(diǎn)N,使得以點(diǎn)D,P,M.N為頂點(diǎn)的四邊形是平行四邊形?若存在,則直接寫出N點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com