【題目】如圖,已知在ABC中,AB=AC,點DBC上一點(不與點B、點C重合),連結AD,以AD為邊在AC同側作ADE,DEAC于點F,其中AD=AE,∠ADE=B.

1)求證:ABD∽△AEF

2)若,記ABD的面積為S1,AEF的面積為S2,求的值.

【答案】(1)見解析;(2) .

【解析】

1)根據等腰三角形的性質與三角形的內角和易證∠B=C=ADE=E,再根據∠BDE=∠ADB+∠ADE=∠C+∠DFC=∠E+∠AFE可得∠ADB=∠AFE,即可得證;

2)根據相似三角形的面積比為相似比的平方即可得解.

(1)證明:∵AB=BC

∴∠B=∠C

∵AD=AE

∴∠ADE=∠E

∵∠ADE=∠B

∴∠B=∠E

∠BDE=∠ADB+∠ADE=∠C+∠DFC=∠E+∠AFE

∴∠ADB=∠AFE

∴△ABD∽△AEF

2)由(1)得,.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Qy軸上的一個動點.

1)請直接寫出ak,b的值及關于x的不等式ax2kx2的解集;

2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;

3)是否存在以PQ,AB為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣23)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標;

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖,請求出M點的坐標和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c的部分圖象,A1,0),B0,3).

1)求拋物線的解析式;

2)若拋物線與x軸的另一個交點是C點,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,點DBC邊上一點(不與點B,點C重合),連結AD,點E、點F分別為AB、AC上的點,且EFBC,交AD于點G,連結BG,并延長BGAC于點H.已知=2,①若ADBC邊上的中線,的值為;②若BHAC,當BC2CD時,2sinDAC.則(

A. ①正確;②不正確B. ①正確;②正確

C. ①不正確;②正確D. ①不正確;②正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列平面圖形中,既是軸對稱圖形,又是中心對稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDRtABC斜邊AB上的中線,過點D垂直于AB的直線交BCE,交AC延長線于F

求證:(1)ADF∽△EDB;

(2)CD2DEDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線:y=﹣xx3)(0x3),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…如此進行下去,直至得C17.若P50,m)在第17段拋物線C17上,則m_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABGHBCFG、CDEF是邊長為1的正方形,連接BH、CH、DH,求證:∠ABH+ACH+ADH90°

查看答案和解析>>

同步練習冊答案