如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);(本題2分)
(2)求證:AE是⊙O的切線;(本題2分)
(3)當BC=4時,求劣弧AC的長.(本題3分)
(1)60°(2)見解析(3)
【解析】
試題分析:解:(1)∵∠ABC與∠D都是弧AC所對的圓周角,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直徑,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切線;
(3)連接OC,
∵OB=OC,∠ABC=60°,
∴△OBC是等邊三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的長為
考點:本題考查了切線定理
點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要垂徑定理、切線定理和圓的基本知識熟練把握
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
BE | AD |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com