【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊CD上,且BG=CG,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正確結(jié)論的個(gè)數(shù)是( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

【答案】D

【解析】

根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證RtABGRtAFG;根據(jù)角的和差關(guān)系求得∠GAF=45°;在直角△ECG,根據(jù)勾股定理可證CE=2DE;通過(guò)證明∠AGB=AGF=GFC=GCF,由平行線的判定可得AGCF求出SECG,SFCG=即可得出結(jié)論

①正確.理由

AB=AD=AFAG=AG,B=AFG=90°,RtABGRtAFGHL);

②正確.理由

∵∠BAG=FAGDAE=FAE

又∵∠BAD=90°,∴∠EAG=45°;

③正確.理由

設(shè)DE=x,EF=x,EC=12-x在直角△ECG,根據(jù)勾股定理:(12x2+62=(x+62,解得x=4DE=x=4,CE=12-x=8,∴CE=2DE;

④正確.理由

CG=BG,BG=GFCG=GF,∴∠GFC=GCF

又∵RtABGRtAFG,∴∠AGB=AGF,AGB+∠AGF=2AGB=GFC+∠GCF=2GFC=2GCF∴∠AGB=AGF=GFC=GCF,AGCF

⑤正確.理由

SECG=GCCE=×6×8=24

SFCG===

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖的對(duì)角線相交于點(diǎn)過(guò)點(diǎn)分別相交于點(diǎn),

1)求證:

2)若圖中的條件都不變,將轉(zhuǎn)動(dòng)到圖的位置,那么上述結(jié)論是否成立?(不用證明)

3)若將向兩方延長(zhǎng)與平行四邊形的兩對(duì)邊的延長(zhǎng)線分別相交(圖和圖),結(jié)論是否成立,說(shuō)明你的理由,(選用圖進(jìn)行證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)觀察推理:如圖 1,△ABC 中,∠ACB=90°,AC=BC,直線 L 過(guò)點(diǎn)C,點(diǎn) A,B 在直線 L 同側(cè),BD⊥L, AE⊥L,垂足分別為D,E

求證:△AEC≌△CDB

(2)類比探究:如圖 2,RtABC 中,∠ACB=90°,AC=4,將斜邊 AB 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn) 90° AB’, 連接B’C,求AB’C 的面積

(3)拓展提升:如圖 3,等邊EBC ,EC=BC=3cm,點(diǎn) O BC 上且 OC=2cm,動(dòng)點(diǎn) P 從點(diǎn) E 沿射線EC 1cm/s 速度運(yùn)動(dòng),連接 OP,將線段 OP 繞點(diǎn)O 逆時(shí)針旋轉(zhuǎn) 120°得到線段 OF,設(shè)點(diǎn) P 運(yùn)動(dòng)的時(shí)間為t 秒。

當(dāng)t= 時(shí),OF∥ED

若要使點(diǎn)F 恰好落在射線EB 上,求點(diǎn)P 運(yùn)動(dòng)的時(shí)間t

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.

(1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC中,A(1,0),C(0,2),雙曲線y= (0<k<2)的圖象分別交AB,CB于點(diǎn)E,F(xiàn),連接OE,OF,EF,SOEF=2SBEF , 則k值為( )

A.
B.1
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘船由A港沿北偏東60°方向航行10kmB港,然后再沿北偏西30°方向航行10kmC港.

1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);

2)確定C港在A港的什么方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=ax+b與反比例函數(shù)y= ,其中ab<0,a、b為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸的負(fù)半軸、y軸的正半軸上,點(diǎn)B在第二象限.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上,得到矩形ODEF,BC與OD相交于點(diǎn)M.若經(jīng)過(guò)點(diǎn)M的反比例函數(shù)y= (x<0)的圖象交AB于點(diǎn)N,S矩形OABC=32,tan∠DOE= ,則BN的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,高BDCE交于點(diǎn)O,AOBC于點(diǎn)F,則圖中共有全等三角形( 。

A.8對(duì)B.7對(duì)C.6對(duì)D.5對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案