【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為 的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(﹣1,0),點(diǎn)B在拋物線(xiàn)y=ax2+ax﹣2上.
(1)點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為;
(2)拋物線(xiàn)的解析式為;
(3)設(shè)(2)中拋物線(xiàn)的頂點(diǎn)為D,求△DBC的面積;
(4)在拋物線(xiàn)上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)(0,2);(﹣3,1)
(2)y= x2+ x﹣2
(3)
解:由(2)中拋物線(xiàn)的解析式可知,拋物線(xiàn)的頂點(diǎn)D(﹣ ,﹣ ),
設(shè)直線(xiàn)BD的關(guān)系式為y=kx+b,將點(diǎn)B、D的坐標(biāo)代入得:
,
解得 .
∴BD的關(guān)系式為y=﹣ x﹣ .
設(shè)直線(xiàn)BD和x 軸交點(diǎn)為E,則點(diǎn)E(﹣ ,0),CE= .
∴S△DBC= × ×(1+ )=
(4)
解:假設(shè)存在點(diǎn)P,使得△ACP仍然是以AC為直角邊的等腰直角三角形:
①若以點(diǎn)C為直角頂點(diǎn);
則延長(zhǎng)BC至點(diǎn)P1,使得P1C=BC,得到等腰直角三角形△ACP1,
過(guò)點(diǎn)P1作P1M⊥x軸,
∵CP1=BC,∠MCP1=∠BCF,∠P1MC=∠BFC=90°,
∴△MP1C≌△FBC.
∴CM=CF=2,P1M=BF=1,
∴P1(1,﹣1);
②若以點(diǎn)A為直角頂點(diǎn);
i)則過(guò)點(diǎn)A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,
過(guò)點(diǎn)P2作P2N⊥y軸,同理可證△AP2N≌△CAO,
∴NP2=OA=2,AN=OC=1,
∴P2(2,1),
ii)若以點(diǎn)P為直角頂點(diǎn).
過(guò)P3作P3G⊥y軸于G,
同理,△AGP3≌△CAO,
∴GP3=OA=2,AG=OC=1,
∴P3為(﹣2,3).
經(jīng)檢驗(yàn),點(diǎn)P1(1,﹣1)與點(diǎn)P2(2,1)都在拋物線(xiàn)y= x2+ x﹣2上,點(diǎn)P3(﹣2,3)不在拋物線(xiàn)上.
故點(diǎn)P的坐標(biāo)為P1(1,﹣1)與P2(2,1).
【解析】解:(1)∵C(﹣1,0),AC= ,
∴OA= =2,
∴A(0,2);
過(guò)點(diǎn)B作BF⊥x軸,垂足為F,
∵∠ACO+∠CAO=90°,∠ACO+∠BCF=90°,∠BCF+∠FBC=90°,
在△AOC與△CFB中,
∵ ,
∴△AOC≌△CFB,
∴CF=OA=2,BF=OC=1,
∴OF=3,
∴B的坐標(biāo)為(﹣3,1),
故答案為:(0,2),(﹣3,1);
·(2)∵把B(﹣3,1)代入y=ax2+ax﹣2得:
1=9a﹣3a﹣2,
解得a= ,
∴拋物線(xiàn)解析式為:y= x2+ x﹣2.
故答案為:y= x2+ x﹣2;
(1)先根據(jù)勾股定理求出OA的長(zhǎng),即可得出點(diǎn)A的坐標(biāo),再求出OE、BE的長(zhǎng)即可求出B的坐標(biāo);(2)把點(diǎn)B的坐標(biāo)代入拋物線(xiàn)的解析式,求出a的值,即可求出拋物線(xiàn)的解析式;(3)先求出點(diǎn)D的坐標(biāo),再用待定系數(shù)法求出直線(xiàn)BD的解析式,然后求出CF的長(zhǎng),再根據(jù)S△DBC=S△CEB+S△CED進(jìn)行計(jì)算即可;(4)假設(shè)存在點(diǎn)P,使得△ACP仍然是以AC為直角邊的等腰直角三角形:
①若以點(diǎn)C為直角頂點(diǎn);則延長(zhǎng)BC至點(diǎn)P1 , 使得P1C=BC,得到等腰直角三角形△ACP1 , 過(guò)點(diǎn)P1作P1M⊥x軸,由全等三角形的判定定理可得△MP1C≌△FBC,再由全等三角形的對(duì)應(yīng)邊相等可得出點(diǎn)P1點(diǎn)的坐標(biāo);
②若以點(diǎn)A為直角頂點(diǎn);則過(guò)點(diǎn)A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2 , 過(guò)點(diǎn)P2作P2N⊥y軸,同理可證△AP2N≌△CAO,由全等三角形的性質(zhì)可得出點(diǎn)P2的坐標(biāo);點(diǎn)P1、P2的坐標(biāo)代入拋物線(xiàn)的解析式進(jìn)行檢驗(yàn)即可.
③以點(diǎn)P為直角頂點(diǎn),求出點(diǎn)P的坐標(biāo),再判斷點(diǎn)P不在拋物線(xiàn)上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,B,C兩點(diǎn)把線(xiàn)段AD分成2:5:3三部分,M為AD的中點(diǎn),BM=6cm,求CM和AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)同心圓的半徑分別為4cm和5cm,大圓的一條弦AB與小圓相切,則弦AB的長(zhǎng)為( )
A.6cm
B.4cm
C.3cm
D.8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,A(﹣4,0),B(0,2),連結(jié)AB并延長(zhǎng)到C,連結(jié)CO,若△COB∽△CAO,則點(diǎn)C的坐標(biāo)為( )
A.(1, )
B.( , )
C.( ,2 )
D.( ,2 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)學(xué)習(xí),同學(xué)們已經(jīng)體會(huì)到靈活運(yùn)用乘法公式使整式的乘法運(yùn)算方便、快捷.相信通過(guò)對(duì)下面材料的學(xué)習(xí)、探究,會(huì)使你大開(kāi)眼界,并獲得成功的喜悅.
例:用簡(jiǎn)便方法計(jì)算:.
解:
①
②
.
(1)例題求解過(guò)程中,第②步變形是利用___________(填乘法公式的名稱(chēng)).
(2)用簡(jiǎn)便方法計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ΔABC的三邊長(zhǎng)為a、b、c,下列條件能夠說(shuō)明ΔABC是直角三角形的是( )
A. a:b:c=5:12:15 B. 3a=4b=5c C. a:b:c=1:2: D. a=b=c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,BC=3AB,A,B兩點(diǎn)的坐標(biāo)分別是(﹣1,0),(0,2),C,D兩點(diǎn)在反比例函數(shù)y= (x<0)的圖象上,則k的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖1,點(diǎn)M,N把線(xiàn)段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱(chēng)點(diǎn)M,N是線(xiàn)段AB的勾股分割點(diǎn)
(1)已知點(diǎn)M,N是線(xiàn)段AB的勾股分割點(diǎn),若AM=3,MN=4求BN的長(zhǎng);
(2)已知點(diǎn)C是線(xiàn)段AB上的一定點(diǎn),其位置如圖2所示,請(qǐng)?jiān)贐C上畫(huà)一點(diǎn)D,使C,D是線(xiàn)段AB的勾股分割點(diǎn)(要求尺規(guī)作圖,保留作圖痕跡,畫(huà)出一種情形即可)
(3)如圖3,正方形ABCD中,M,N分別在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分別交BD于E,F(xiàn)
求證:①E、F是線(xiàn)段BD的勾股分割點(diǎn);
②△AMN的面積是△AEF面積的兩倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上有A、B、C三個(gè)點(diǎn)對(duì)應(yīng)的數(shù)分別是a、b、c,滿(mǎn)足|a+24|+|b+10|+(c﹣10)2=0;動(dòng)點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q從A點(diǎn)出發(fā),以每秒3個(gè)單位的速度向C點(diǎn)運(yùn)動(dòng),Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動(dòng)到終點(diǎn)A.在返回過(guò)程中,當(dāng)t=_____秒時(shí),P、Q兩點(diǎn)之間的距離為2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com