【題目】如圖,ABC中,AB=AC,BEACE,且DE分別是AB、AC的中點.延長BC至點F,使CF=CE

1)求ABC的度數(shù);

2)求證:BE=FE;

3)若AB=2,求CEF的面積.

【答案】(1) ABC=60°;2)證明見解析;(3

【解析】

試題分析:1)根據(jù)等邊三角形的判定得出ABC是等邊三角形,即可得出ABC的度數(shù);

2)根據(jù)BE=FE得出F=CEF=30°,再等邊三角形的性質(zhì)得出EBC=30°,即可證明;

3)過E點作EGBC,根據(jù)三角形面積解答即可.

試題解析:1BEACE,EAC的中點,

∴△ABC是等腰三角形,即AB=BC,

AB=AC,

∴△ABC是等邊三角形,

∴∠ABC=60°;

2CF=CE,

∴∠F=CEF,

∵∠ACB=60°=F+CEF

∴∠F=30°,

∵△ABC是等邊三角形,BEAC,

∴∠EBC=30°

∴∠F=EBC,

BE=EF;

3)過E點作EGBC,如圖:

BEAC,EBC=30°AB=BC=2,

BE=,CE=1=CF,

BEC中,EG=,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為數(shù)軸的原點,A,B為數(shù)軸上的兩點,點A表示的數(shù)為-30,點B表示的數(shù)為100.

(1)A,B兩點間的距離是________.

(2)若點C也是數(shù)軸上的點,點C到點B的距離是點C到原點O的距離的3倍,求點C表示的數(shù).

(3)若電子螞蟻P從點B出發(fā),以6個單位長度/s的速度向左運動,同時另一只電子螞蟻Q恰好從點A出發(fā),以4個單位長度/s的速度向左運動,設兩只電子螞蟻同時運動到了數(shù)軸上的點D,那么點D表示的數(shù)是多少?

(4)若電子螞蟻P從點B出發(fā),以8個單位長度/s的速度向右運動,同時另一只電子螞蟻Q恰好從點A出發(fā),以4個單位長度/s的速度向右運動.設數(shù)軸上的點N到原點O的距離等于點P到原點O的距離的一半(點N在原點右側(cè)),有下面兩個結(jié)論:①ON+AQ的值不變;②ON-AQ的值不變,請判斷哪個結(jié)論正確,并求出正確結(jié)論的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn):

如圖1所示的圖形,像我們常見的學習用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:

(1)觀察規(guī)形圖,試探究∠BDC與∠A、B、C之間的關(guān)系,并說明理由;

(2)請你直接利用以上結(jié)論,解決以下三個問題:

①如圖2,把一塊三角尺XYZ放置在ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+ACX=__________°;

②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,DBE=130°,求∠DCE的度數(shù);

③如圖4,ABD,ACD10等分線相交于點G1、G2…、G9,若∠BDC=140°,BG1C=77°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,用線段順次連結(jié)點A(-2,0),B(0,3),C(3,3),D(4,0).

(1)這是一個什么圖形;

(2)求出它的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O為直線AB上一點,過點O向直線AB上方引三條射線OC、OD、OE,且OC平分∠AOD,2=31.

(1)若∠1=18°,求∠COE的度數(shù);

(2)若∠COE=70°,求∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,矩形ABCD中,BD=5cmBC=4cm,E是邊AD上一點,且BE = ED,P是對角線上任意一點,PFBE,PGAD,垂足分別為F、G.PF + PG的長為(.

A. 2.5 cm B. 2.8 cm C. 3 cm D. 3.5 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線ACBD交于點O,BE平分∠ABCAC于點F,交AD于點E,且∠DBF=15°,求證:(1AO=AE; (2)FEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,ABACBC6.點P射線BA上一點,點Q是AC的延長線上一點,且BPCQ,連接PQ,與直線BC相交于點D.

(1)如圖①,當點P為AB的中點時,求CD的長;

(2)如圖②,過點P作直線BC的垂線,垂足為E,當點P,Q分別在射線BA和AC的延長線上任意地移動過程中,線段BE,DE,CD中是否存在長度保持不變的線段?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,D,E為BC上兩點,過點D,E分別作AC,AB的垂線,兩垂線交于點M,垂足分別為G,F(xiàn),若∠AED=∠BAD,AB=AC=2,則下列說法中不正確的是(  )

A.△CAE∽△BDA
B.
C.BD?CE=4
D.BE=BF

查看答案和解析>>

同步練習冊答案