【題目】如圖,在矩形ABCD中,AB=2 ,AD=4,點E是BC邊上一個動點,連接AE,作DF⊥AE于點F,當(dāng)BE的長為時,△CDF是等腰三角形.

【答案】2或2 或4﹣2
【解析】解:①CF=CD時,過點C作CM⊥DF,垂足為點M,

則CM∥AE,DM=MF,

延長CM交AD于點G,

∴AG=GD=2,

∴CE=2,

∴當(dāng)BE=2時,△CDF是等腰三角形;②DF=DC時,則DF=DC=AB=2 ,

∵DF⊥AE,AD=2,

∴∠DAE=45°,

則BE=2 ,

∴當(dāng)BE=2 時,△CDF是等腰三角形;③FD=FC時,則點F在CD的垂直平分線上,故F為AE中點.

∵AB=2 ,BE=x,

∴AE= ,

AF=

∵△ADF∽△EAB,

,即 ,

解得:x=4﹣2 或x=4+2 (舍去);

∴當(dāng)BE=4﹣2 時,△CDF是等腰三角形.

綜上,當(dāng)BE=2或2 或4﹣2 時,△CDF是等腰三角形.

所以答案是:2或2 或4﹣2

【考點精析】通過靈活運用等腰三角形的判定和矩形的性質(zhì),掌握如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊).這個判定定理常用于證明同一個三角形中的邊相等;矩形的四個角都是直角,矩形的對角線相等即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①、②分別是某種型號跑步機的實物圖與示意圖,已知踏板CD長為1.6m,CD與地面DE的夾角∠CDE為12°,支架AC長為0.8m,∠ACD為80°,求跑步機手柄的一端A的高度h(精確到0.1m). (參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點A、D在坐標(biāo)軸上,其坐標(biāo)分別為(2,0),(0,4),對角線AC⊥x軸.
(1)求直線DC對應(yīng)的函數(shù)解析式
(2)若反比例函數(shù)y= (k>0)的圖象經(jīng)過DC的中點M,請判斷這個反比例函數(shù)的圖象是否經(jīng)過點B,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,一定長為半徑作圓弧,分別交AD、AB于點E、F;再分別以點E、F為圓心,大于 EF的長為半徑作弧,兩弧交于點G;作射線AG,交邊CD于點H.若AB=6,AD=4,則四邊形ABCH的周長與三角形ADH的周長之差為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查公司對本區(qū)域的共享單車數(shù)量及使用次數(shù)進(jìn)行了調(diào)查發(fā)現(xiàn),今年3月份第1周共有各類單車1000輛,第2周比第1周增加了10%,第3周比第2周增加了100輛.

調(diào)查還發(fā)現(xiàn)某款單車深受群眾喜愛,第1周該單車的每輛平均使用次數(shù)是這一周所有單車平均使用次數(shù)的2.5倍,第2周、第3周該單車的每輛平均使用次數(shù)都比前一周增長一個相同的百分?jǐn)?shù)m,第3周所有單車的每輛平均使用次數(shù)比第1周增加的百分?jǐn)?shù)也是m,而且第3周該款單車(共100輛)的總使用次數(shù)占到所有單車總使用次數(shù)的四分之一(注:總使用次數(shù)=每輛平均使用次數(shù)×車輛數(shù)).

(1)求第3周該區(qū)域內(nèi)各類共享單車的總數(shù)量;

(2)求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一盒中有x個黑球和2個白球,這些球除顏色外無其他差別.若從盒中隨機取一個球,黑球的概率是
(1)填空:x=;
(2)從該盒子中隨機摸出一個球,記下顏色后,不放回,再從該盒子中摸出一個球記下顏色,請用畫樹狀圖或列表求兩次摸出的球的顏色都是白色的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長方形OABC的邊OC、OA分別在x軸、y軸上,B點在第一象限,點A的坐標(biāo)是(0,4),OC=8.

(1)直接寫出點B、C的坐標(biāo);

(2)點P從原點O出發(fā),在邊OC上以每秒1個單位長度的速度勻速向C點移動,同時點Q從點B出發(fā),在邊BA上以每秒2個單位長度的速度勻速向A點移動,當(dāng)一個點到達(dá)終點時,另一個點隨之停止移動,設(shè)移動的時間為t秒鐘,探究下列問題:

當(dāng)t值為多少時,直線PQy軸?

在整個運動過程中,能否使得四邊形BCPQ的面積是長方形OABC的面積的?若能,請直接寫出P、Q兩點的坐標(biāo);若不能,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好治理和凈化運河,保護(hù)環(huán)境,運河綜合治理指揮部決定購買10臺污水處理設(shè)備.現(xiàn)有A、B兩種型號的設(shè)備,其中每臺的價格、月處理污水量如下表.經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2A型設(shè)備比購買3B型設(shè)備少6萬元.

A

B

價格(萬元/)

處理污水量(/)

220

180

(1)的值;

(2)由于受資金限制,運河綜合治理指揮部決定購買污水處理設(shè)備的資金既不少于108萬元也不超過110萬元,問有哪幾種購買方案?每月最多能處理污水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.

(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案