【題目】如圖,AB=AC,BD⊥AC于D,CE⊥AB于E,CE,BD相交于點(diǎn)O,則圖中全等的直角三角形有__對(duì).

【答案】4

【解析】

首先證明△ACE≌△ABD可得AD=AE,EC=BD,根據(jù)等式的性質(zhì)可得AB-AE=AC-AD,即EB=DC;再證明△EBC≌△DCB,△EOB≌△DOC即可.

解:△ACE≌△ABD,△EBC≌△DCB,△EOB≌△DOC,
∵BD、CE為高,
∴∠ADB=∠AEC=,90°,
在△AEC和△ADB中,
∠A=∠A,∠AEC=∠ADB,AB=AC,

∴△ACE≌△ABD(ASA);
∴AD=AE,EC=BD,
∴AB-AE=AC-AD,
即EB=DC,
在△EBC和△DCB中,
EB=DC,BC=BC,EC=DB,∴△EBC≌△DCB(SSS),
在△EOB和△DOC中,
EB=DC,∠OEB=∠ODC,∠EOB=∠DOC,

∴△EOB≌△DOC(AAS).
故答案為:3.

“點(diǎn)睛”本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了監(jiān)控一不規(guī)則多邊形藝術(shù)走廊內(nèi)的活動(dòng)情況,現(xiàn)已在A,B兩處各安裝了一個(gè)監(jiān)控探頭(走廊內(nèi)所用探頭的觀測(cè)區(qū)域?yàn)閳A心角最大可取到180°的扇形),圖中的陰影部分是A處監(jiān)控探頭觀測(cè)到的區(qū)域.要使整個(gè)藝術(shù)走廊都能被監(jiān)控到,還需再安裝一個(gè)監(jiān)控探頭,則安裝的位置是( )

A.E處
B.F處
C.G處
D.H處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家生產(chǎn)的一種新型節(jié)能燈,為了打開市場(chǎng)出臺(tái)了相關(guān)政策:由廠家協(xié)調(diào),廠家按成本價(jià)提供產(chǎn)品給經(jīng)營戶自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由廠家承擔(dān).李明按照相關(guān)政策投資銷售本產(chǎn)品.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開始銷售的第一個(gè)月將銷售單價(jià)定為20元,那么廠家這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤(rùn)不低于3000元,那么廠家為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃購買一批籃球和足球,已知購買2個(gè)籃球和1個(gè)足球共需320元,購買3個(gè)籃球和2個(gè)足球共需540元.

(1)求每個(gè)籃球和每個(gè)足球的售價(jià);

(2)如果學(xué)校計(jì)劃購買這兩種球共50個(gè),總費(fèi)用不超過5500元,那么最多可購買多少個(gè)足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)第一次用11000元購進(jìn)某款拼裝機(jī)器人進(jìn)行銷售,很快銷售一空,商家又用24000元第二次購進(jìn)同款機(jī)器人,所購進(jìn)數(shù)量是第一次的2倍,但單價(jià)貴了10元.

(1)求該商家第一次購進(jìn)機(jī)器人多少個(gè)?

(2)若所有機(jī)器人都按相同的標(biāo)價(jià)銷售,要求全部銷售完畢的利潤(rùn)率不低于20%(不考慮其它因素),那么每個(gè)機(jī)器人的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿AH折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.折痕與邊BC交于點(diǎn) H,已知AD=8,HC:HB=3:5.

(1)求證:△HCP∽△PDA;
(2)探究AB與HB之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)連結(jié)BP,動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問當(dāng)點(diǎn)M、N在移動(dòng)過程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說明理由;說明理由;若不變,求出線段EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣1、3、﹣2這三個(gè)數(shù)中,任選兩個(gè)數(shù)的積作為k的值,使反比例函數(shù) 的圖象在第一、三象限的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需用甲種原料9千克、乙種原料3千克,可獲利潤(rùn)700元;生產(chǎn)一件B種產(chǎn)品需用甲種原料4千克、乙種原料10千克,可獲利潤(rùn)1200元。設(shè)生產(chǎn)A種產(chǎn)品的生產(chǎn)件數(shù)為x, A、B兩種產(chǎn)品所獲總利潤(rùn)為y (元)

(1)試寫出yx之間的函數(shù)關(guān)系式;

(2)求出自變量x的取值范圍;

(3)利用函數(shù)的性質(zhì)說明哪種生產(chǎn)方案獲總利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,易知P,請(qǐng)補(bǔ)充完整證明過程:

證明:過點(diǎn)P

已作

____________

____________

變式:

如圖是直線EF上的兩點(diǎn),猜想這四個(gè)角之間的關(guān)系,并直接寫出以下三種情況下這四個(gè)角之間的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案