【題目】下列圖形都是由面積為1的正方形按一定的規(guī)律組成的,其中,第1個圖形中面積為1的正方形有9個,第2個圖形中面積為1的正方形有14個,……,按此規(guī)律,則第幾個圖形中面積為1的正方形的個數(shù)為2019個( )
A.400B.401C.402D.403
【答案】D
【解析】
由第1個圖形有9個邊長為1的小正方形,第2個圖形有9+5=14個邊長為1的小正方形,第3個圖形有9+5×2=19個邊長為1的小正方形,…由此得出第n個圖形有9+5×(n-1)=5n+4個邊長為1的小正方形,由此求得答案即可.
解:第1個圖形邊長為1的小正方形有9個,
第2個圖形邊長為1的小正方形有9+5=14個,
第3個圖形邊長為1的小正方形有9+5×2=19個,
…
第n個圖形邊長為1的小正方形有9+5×(n-1)=5n+4個,
當(dāng)5n+4=2019時(shí),解得n=403
所以第403個圖形中邊長為1的小正方形的個數(shù)為2019個.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為t(秒),將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個角α(α=∠BCD),得到對應(yīng)線段CF.
(1)求證:BE=DF;
(2)當(dāng)t= 秒時(shí),DF的長度有最小值,最小值等于 ;
(3)如圖2,連接BD、EF、BD交EC、EF于點(diǎn)P、Q,當(dāng)t為何值時(shí),△EPQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的點(diǎn)A,C在⊙O上,⊙O與AB相交于點(diǎn)D,連接CD,∠A=30°,DC=.
(1)求圓心O到弦DC的距離;
(2)若∠ACB+∠ADC=180°,求證:BC是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知矩形ABCD,AB=4,AD=3,點(diǎn)E為邊DC上不與端點(diǎn)重合的一個動點(diǎn),連接BE,將BCE沿BE翻折得到BEF,連接AF并延長交CD于點(diǎn)G,則線段CG的最大值是( )
A.1B.1.5C.4-D.4-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,點(diǎn)E是BC的中點(diǎn),過點(diǎn)B作BG⊥AE于點(diǎn)G,過點(diǎn)C作CF垂直BG的延長線于點(diǎn)H,交AD于點(diǎn)F
(1)求證:△ABG≌△BCH;
(2)如圖2,連接AH,連接EH并延長交CD于點(diǎn)I;
求證:① AB2=AE·BH;② 求的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公路局施工隊(duì)要修建一條東西方向的公路,已知點(diǎn)周圍100米范圍內(nèi)為古建筑保護(hù)群,在上的點(diǎn)處測得在的北偏東方向上,從向東走400米到達(dá)處,測得在點(diǎn)的北偏西方向上.(參考數(shù)據(jù):,)
(1)是否穿過古建筑保護(hù)群?為什么?
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高,則原計(jì)劃完成這項(xiàng)工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一臺實(shí)物投影儀,圖2是它的示意圖,折線O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AO⊥OM,垂足為點(diǎn)O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
將圖2中的BC繞點(diǎn)B向下旋轉(zhuǎn)45°,使得BCD落在BC′D′的位置(如圖3所示),此時(shí)C′D′⊥OM,AD′∥OM,AD′=16cm,求點(diǎn)B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,AD是△ABC的中線,∠ADC=45°,把△ADC沿AD對折,使點(diǎn)C落在C′的位置,C′D交AB于點(diǎn)Q,則的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學(xué)在校外實(shí)踐活動中對此開展測量活動.如圖,在橋外一點(diǎn)A測得大橋主架與水面的交匯點(diǎn)C的俯角為α,大橋主架的頂端D的仰角為β,已知測量點(diǎn)與大橋主架的水平距離AB=a,則此時(shí)大橋主架頂端離水面的高CD為( )
A.asinα+asinβB.acosα+acosβC.atanα+atanβD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com