【題目】如圖,已知矩形OABC中,OA=2,AB=4,雙曲線 (k>0)與矩形兩邊AB、BC分別交于E、F.

(1)若E是AB的中點,求F點的坐標;
(2)若將△BEF沿直線EF對折,B點落在x軸上的D點,作EG⊥OC,垂足為G,證明△EGD∽△DCF,并求k的值.

【答案】
(1)

解:∵點E是AB的中點,OA=2,AB=4,

∴點E的坐標為(2,2),

將點E的坐標代入y= ,可得k=4,

即反比例函數(shù)解析式為:y= ,

∵點F的橫坐標為4,

∴點F的縱坐標= =1,

故點F的坐標為(4,1)


(2)

解:由折疊的性質(zhì)可得:BE=DE,BF=DF,∠B=∠EDF=90°,

∵∠CDF+∠EDG=90°,∠GED+∠EDG=90°,

∴∠CDF=∠GED,

又∵∠EGD=∠DCF=90°,

∴△EGD∽△DCF,

結(jié)合圖形可設(shè)點E坐標為( ,2),點F坐標為(4, ),

則CF= ,BF=DF=2﹣ ,ED=BE=AB﹣AE=4﹣

在Rt△CDF中,CD= = = ,

,即 = ,

=1,

解得:k=3


【解析】(1)根據(jù)點E是AB中點,可求出點E的坐標,將點E的坐標代入反比例函數(shù)解析式可求出k的值,再由點F的橫坐標為4,可求出點F的縱坐標,繼而得出答案;(2)證明∠GED=∠CDF,然后利用兩角法可判斷△EGD∽△DCF,設(shè)點E坐標為( ,2),點F坐標為(4, ),即可得CF= ,BF=DF=2﹣ ,在Rt△CDF中表示出CD,利用對應(yīng)邊成比例可求出k的值.
【考點精析】本題主要考查了反比例函數(shù)的圖象和反比例函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點;性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=x2﹣1交x軸的正半軸于點A,交y軸于點B,將此拋物線向右平移4個單位得拋物線y2 , 兩條拋物線相交于點C.

(1)請直接寫出拋物線y2的解析式;
(2)若點P是x軸上一動點,且滿足∠CPA=∠OBA,求出所有滿足條件的P點坐標;
(3)在第四象限內(nèi)拋物線y2上,是否存在點Q,使得△QOC中OC邊上的高h有最大值?若存在,請求出點Q的坐標及h的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長為1,四邊形ABCD的頂點都在格點上.

(1)在方格紙上建立平面直角坐標系,使四邊形ABCD的頂點A,C的坐標分別為(5,﹣1),(3,﹣3),并寫出點D的坐標;

(2)(1)中所建坐標系中,畫出四邊形ABCD關(guān)于x軸的對稱圖形A1B1C1D1,并寫出點B的對應(yīng)點B1的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)用等式AM=(i,j)表示正奇數(shù)M是第i組第j個數(shù)(從左往右數(shù)),如A7=(2,3),則A2013=( )
A.(45,77)
B.(45,39)
C.(32,46)
D.(32,23)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果AB、C三點在同一直線上,且線段AB=6 cmBC=4 cm,若M,N分別為ABBC的中點,那么MN兩點之間的距離為( )

A. 5 cm B. 1 cm C. 51 cm D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點C的坐標為(0,﹣2),交x軸于A、B兩點,其中A(﹣1,0),直線l:x=m(m>1)與x軸交于D.

(1)求二次函數(shù)的解析式和B的坐標;
(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013成都)若正整數(shù)n使得在計算n+(n+1)+(n+2)的過程中,各數(shù)位均不產(chǎn)生進位現(xiàn)象,則稱n為“本位數(shù)”.例如2和30是“本位數(shù)”,而5和91不是“本位數(shù)”.現(xiàn)從所有大于0且小于100的“本位數(shù)”中,隨機抽取一個數(shù),抽到偶數(shù)的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B在線段AC上,點D、E在AC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求證:AC=AD+CE;
(2)若AD=3,CE=5,點P為線段AB上的動點,連接DP,作PQ⊥DP,交直線BE于點Q; (i)當點P與A、B兩點不重合時,求 的值;
(ii)當點P從A點運動到AC的中點時,求線段DQ的中點所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線y= (k>0)經(jīng)過Rt△OAB的直角邊AB的中點C,與斜邊OB相交于點D,若OD=1,則BD=

查看答案和解析>>

同步練習冊答案