【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).

【答案】1)詳見解析;(2)詳見解析;(3450

【解析】

1)根據(jù)勾股定理畫出邊長為的正方形即可;
2)根據(jù)勾股定理和已知畫出符合條件的三角形即可;
3)連接AC、CD,求出△ACB是等腰直角三角形即可.


1)如圖1的正方形的邊長是,面積是10;
2)如圖2的三角形的邊長分別為2,;
3)如圖3,連接AC,
因為AB2=22+42=20,AC2=32+12=10,BC2=32+12=10,

所以AB2= AC2+ BC2,AC=BC
∴三角形ABC是等腰直角三角形,
∴∠ABC=BAC=45°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B在直線1,AB = 20cm,BAC= 120°.

(1)PA出發(fā),沿射線AB以每秒2cm的速度向右運動,同時點QB出發(fā),沿射線BA以每秒lcm的速度向左運動,求點P出發(fā)多少秒時與點Q重合?

(2)(1)的條件下,求點P出發(fā)多少秒時與點Q相距5cm?

(3)M為射線AC上一點,AM = 4cm,現(xiàn)將射線AC繞點A以每秒30°的速度順時針旋轉(zhuǎn)一周后停止,同時點N從點B出發(fā)沿直線AB向左運動,在這一運動過程中,是否存在某一時刻,使得點NBM的中點?若存在,求出點N運動的速度:若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E為矩形ABCD的邊AB上一點,將矩形沿CE折疊,使點B恰好落在ED上的點F處,若BE=1,BC=3,則CD的長為(  )

A.5B.6C.4D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,請在下列四個關(guān)系中,選出兩個恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)

關(guān)系:①ADBC,AB=CD③∠A=C,④∠B+C=180°.

已知:在四邊形ABCD中,            ;

求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù)12018按一定的規(guī)律排成下圖所示的10列,規(guī)定從上到下依次為1行、2行、3,從左到右依次為第1列至第10列.

1)數(shù)2018   行,   列;

2)把圖中帶陰影的3個方相當(dāng)作一個整體平移,設(shè)被框住的3個數(shù)中,最大的一個數(shù)為x

①求被框住的三個數(shù)的和(用含x的式子表示);

②被框住的三個數(shù)的和能否于2017?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在矩形中,.

1)如圖1,當(dāng)點在對角線上,點邊上時,連接,取的中點,連接,,則的數(shù)量關(guān)系是_____,_____;

2)如圖2,將圖1中的繞點旋轉(zhuǎn),使點的延長線上,(1)中的其他條件不變.

①(1)中的數(shù)量關(guān)系仍然成立嗎?請證明你的結(jié)論;

②求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線x軸相交于A,B兩點(點A在點B的右側(cè)),與y軸交于點C,點D是拋物線的頂點,連接AD、BD.

求△ABD的面積;

如圖2,連接AC、BC,若點P是直線AC上方拋物線上一動點,過PPE//BCAC于點E,作PQ//y軸交AC于點Q,當(dāng)△PQE周長最大時,將△PQE沿著直線AC平移,記移動中的△PQE,連接,求△PQE的周長的最大值及的最小值;

如圖3,點Gx軸正半軸上一點,且OG=OC,連接CG,過GGHAC于點H,將△CGH繞點O順時針旋轉(zhuǎn)),記旋轉(zhuǎn)中的△CGH,在旋轉(zhuǎn)過程中,直線,分別與直線AC交于點M,N 能否成為等腰三角形?若能直接寫出所有滿足條件的的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,OBD的中點,且AD=8BD=12,AC=20,ADB=90°.求BC的長和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個車間接到加工一批零件的任務(wù),從開始加工到完成這項任務(wù)共用了9天.其間,乙車間在加工2天后停止加工,引入新設(shè)備后繼續(xù)加工,直到與甲車間同時完成這項任務(wù)為止,設(shè)甲、乙兩個車間各自加工零件總數(shù)y(單位:件)與加時間x(單位:天)的對應(yīng)關(guān)系如圖1所示,由工廠統(tǒng)計數(shù)據(jù)可知,甲車間與乙車間加工零件總數(shù)之差z(單位:件)與加時間x(單位:天)的對應(yīng)關(guān)系如圖2所示,請根據(jù)圖象提供的信息回答:

圖中的值是__________;

_________天時,甲、乙兩個車間加工零件總數(shù)相同.

查看答案和解析>>

同步練習(xí)冊答案