【題目】(2017山東省萊蕪市)如圖,在矩形ABCD中,BEAC分別交AC、AD于點(diǎn)F、E,若AD=1,AB=CF,則AE=______

【答案】

【解析】解:四邊形ABCD是矩形,BC=AD=1,∠BAF=∠ABC=90°,∴∠ABE+∠CBF=90°,∵BEAC,∴∠BFC=90°,∴∠BCF+∠CBF=90°,∴∠ABE=∠FCB,在ABEFCB中,∵∠EAB=∠BFC=90°,AB=CF,∠ABE=∠FCB,∴△ABE≌△FCB,∴BF=AEBE=BC=1,∵BEAC,∴∠BAF+∠ABF=90°,∵∠ABF+∠AEB=90°,∴∠BAF=∠AEB,∵∠BAE=∠AFB,∴△ABE∽△FBA,∴,∴,∴AE=BF=AB2,在Rt△ABE中,BE=1,根據(jù)勾股定理得,AB2+AE2=BE2=1,∴AE+AE2=1,∵AE>0,∴AE=故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比探究:

1)如圖1,等邊△ABC內(nèi)有一點(diǎn)P,若AP8BP15,CP17,求∠APB的大。唬ㄌ崾荆簩ⅰABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP處)

2)如圖2,在△ABC中,∠CAB90°ABAC,EFBC上的點(diǎn),且∠EAF45°.求證:EF2BE2+FC2;

3)如圖3,在△ABC中,∠C90°,∠ABC30°,點(diǎn)O為△ABC內(nèi)一點(diǎn),連接AO、BO、CO,且∠AOC=∠COB=∠BOA120°,若AC1,求OA+OB+OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下面四個(gè)命題,其中真命題的個(gè)數(shù)有(

(1)平分弦的直徑垂直于這條弦,并且平分這條弦所對(duì)的;

(2)90°的圓周角所對(duì)的弦是直徑;

(3)在同圓或等圓中,圓心角的度數(shù)是圓周角的度數(shù)的兩倍;

(4)如下圖,順次連接圓的任意兩條直徑的端點(diǎn),所得的四邊形一定是矩形.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1)﹣15﹣(﹣8+(﹣11)﹣12

2)(﹣3×(﹣4)﹣15÷

3×36

4)﹣22+3×(﹣14﹣(﹣4×5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某市采用價(jià)格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來水收費(fèi)的價(jià)目表如下(注:水費(fèi)按月份結(jié)算,表示立方米)

請(qǐng)根據(jù)上表的內(nèi)容解答下列問題:

1)填空:若該戶居民2月份用水5m3,則應(yīng)交水費(fèi)   元;3月份用水8m3,則應(yīng)收水費(fèi)   元;

2)若該戶居民4月份用水am3(其中a10m3),則應(yīng)交水費(fèi)多少元(用含a的代數(shù)式表示,并化簡(jiǎn))?

3)若該戶居民5、6兩個(gè)月共用水14m36月份用水量超過了5月份),設(shè)5月份用水xm3,直接寫出該戶居民5、6兩個(gè)月共交水費(fèi)多少元(用含x的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師打算在小明和小白兩位同學(xué)之間選一位同學(xué)參加數(shù)學(xué)競(jìng)賽,他收集了小明、小白近期10次數(shù)學(xué)考試成績(jī),并繪制了折線統(tǒng)計(jì)圖(如圖所示)

項(xiàng)目

眾數(shù)

中位數(shù)

平均數(shù)

方差

最高分

小明

85

85

小白

70100

85

100

(1)根據(jù)折線統(tǒng)計(jì)圖,張老師繪制了不完整的統(tǒng)計(jì)表,請(qǐng)你補(bǔ)充完整統(tǒng)計(jì)表;

(2)你認(rèn)為張老師會(huì)選擇哪位同學(xué)參加比賽?并說明你的理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB,垂足為H,連結(jié)AC,過上一點(diǎn)EEGACCD的延長(zhǎng)線于點(diǎn)G,連結(jié)AECD于點(diǎn)F,且EG=FG,連結(jié)CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是⊙O的切線;

(3)延長(zhǎng)ABGE的延長(zhǎng)線于點(diǎn)M,若tanG=,AH=3,求EM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),∠DOC為直角,OE平分∠BOCOF平分∠AOD,OG平分∠AOC,下列結(jié)論:BOE與∠DOF互為余角;②2AOE﹣∠BOD90°;EOD與∠COG互為補(bǔ)角;BOE﹣∠DOF45°;其中正確的是(  )

A.①②③④B.③④C.②③D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)yax2+bxy=﹣bx+a的圖象可能是( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案