【題目】(本小題滿分10分)
如圖,在□ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過(guò)程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長(zhǎng)為16,AE=4,求∠C的大小.
【答案】(1)詳見(jiàn)解析;(2)60°.
【解析】
試題分析:(1)由作圖過(guò)程可知,AB=AF,AE平分∠BAD,即可得∠BAE=∠EAF.再由四邊形ABCD為平行四邊形,可得BC∥AD,根據(jù)平行線的性質(zhì)可得∠AEB=∠EAF,所以∠BAE=∠AEB,根據(jù)等腰三角形的性質(zhì)可得AB=BE,即可得BE=AF,所以四邊形ABEF為平行四邊形,根據(jù)一組鄰邊相等的平行四邊形是菱形即可判定四邊形ABEF為菱形;(2)連接BF,已知四邊形ABEF為菱形,根據(jù)菱形的性質(zhì)可得BF與AE互相垂直平分,∠BAE=∠FAE,OA=AE=.再由菱形ABEF的周長(zhǎng)為16,可得AF=4.所以cos∠OAF==.即可得∠OAF=30°,所以∠BAF=60°.再由平行線的性質(zhì)即可得∠C=∠BAD=60°.
試題解析:
(1)由作圖過(guò)程可知,AB=AF,AE平分∠BAD.∴∠BAE=∠EAF.
∵四邊形ABCD為平行四邊形,∴BC∥AD.∴∠AEB=∠EAF.
∴∠BAE=∠AEB,∴AB=BE.∴BE=AF.∴四邊形ABEF為平行四邊形.
∴四邊形ABEF為菱形.
(2)連接BF,
∵四邊形ABEF為菱形,∴BF與AE互相垂直平分,∠BAE=∠FAE.
∴OA=AE=.∵菱形ABEF的周長(zhǎng)為16,∴AF=4.
∴cos∠OAF==.∴∠OAF=30°,∴∠BAF=60°.
∵四邊形ABCD為平行四邊形,∴∠C=∠BAD=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列正確說(shuō)法的個(gè)數(shù)是( )
①同位角相等
②對(duì)頂角相等
③等角的補(bǔ)角相等
④同旁內(nèi)角相等,兩直線平行
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD在第一象限內(nèi),AB∥x軸,點(diǎn)A的坐標(biāo)為(5,3),己知直線l:y= x﹣2
(1)將直線l向上平移m個(gè)單位,使平移后的直線恰好經(jīng)過(guò)點(diǎn)A,求m的值
(2)在(1)的條件下,平移后的直線與正方形的邊長(zhǎng)BC交于點(diǎn)E,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)(3,﹣2)關(guān)于x軸的對(duì)稱點(diǎn)是( 。
A. (3,2) B. (﹣3,﹣2) C. (﹣3,2) D. (3,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某專賣店專營(yíng)某品牌的襯衫,店主對(duì)上一周中不同尺碼的襯衫銷售情況統(tǒng)計(jì)如下:
該店主決定本周進(jìn)貨時(shí),增加一些41碼的襯衫,影響該店主決策的統(tǒng)計(jì)量是( )
A.平均數(shù) B.方差 C.眾數(shù) D.中位數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某公路檢測(cè)中心在一事故多發(fā)地帶安裝了一個(gè)測(cè)速儀,檢測(cè)點(diǎn)設(shè)在距離公路10m的A處,測(cè)得一輛汽車從B處行駛到C處所用的時(shí)間為0.9秒.已知∠B=30°,∠C=45°
(1)求B,C之間的距離;(保留根號(hào))
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線交軸于點(diǎn),交軸正半軸于點(diǎn),與過(guò)點(diǎn)的直線相交于另一點(diǎn),過(guò)點(diǎn)作軸,垂足為.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)在線段上(不與點(diǎn)、重合),過(guò)作軸,交直線于,交拋物線于點(diǎn),連接,求面積的最大值;
(3)若是軸正半軸上的一動(dòng)點(diǎn),設(shè)的長(zhǎng)為,是否存在,使以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】連續(xù)四次拋擲一枚硬幣都是正面朝上,則“第五次拋擲正面朝上”是( )
A.必然事件B.不可能事件C.隨機(jī)事件D.小概率事件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com