【題目】在平面直角坐標系中,點A、B、C、D是坐標軸上的點且點C坐標是(0,﹣1),AB=5,點(a,b)在如圖所示的陰影部分內部(不包括邊界),已知OA=OD=4,則a的取值范圍是( )
A.
B.
C.
D.
【答案】D
【解析】解:∵AB=5,OA=4, ∴OB= =3,
∴點B(﹣3,0).
∵OA=OD=4,
∴點A(0,4),點D(4,0).
設直線AD的解析式為y=kx+b,
將A(0,4)、D(4,0)代入y=kx+b,
,解得: ,
∴直線AD的解析式為y=﹣x+4;
設直線BC的解析式為y=mx+n,
將B(﹣3,0)、C(0,﹣1)代入y=mx+n,
,解得: ,
∴直線BC的解析式為y=﹣ x﹣1.
聯(lián)立直線AD、BC的解析式成方程組,
,解得: ,
∴直線AD、BC的交點坐標為( ,﹣ ).
∵點(a,b)在如圖所示的陰影部分內部(不包括邊界),
∴﹣3<a< .
故選D.
根據(jù)勾股定理即可得出OB的長度,由此可得出點B的坐標,由OA、OD的長度可得出點A、D的坐標,根據(jù)點A、D、B、C的坐標利用待定系數(shù)法即可求出直線AD、BC的解析式,聯(lián)立兩直線解析式成方程組,通過解方程組即可求出其交點的坐標,再根據(jù)點(a,b)在如圖所示的陰影部分內部(不包括邊界)結合點B以及交點的橫坐標即可得出結論.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點D為BC的中點,直角∠MDN繞點D旋轉,DM,DN分別與邊AB,AC交于E,F兩點,下列結論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結論是( )
A. ①②④ B. ②③④
C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一個△ABC,頂點A(-1,3),B(2,0),C(-3,-1).
(1)畫出△ABC關于y軸的對稱圖形△A1B1C1(不寫畫法),并寫出點A1,B1,C1的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學舉行“校園好聲音”歌手大賽,初、高中部根據(jù)初賽成績,各選出名選手組成初中代表隊和高中代表隊參加學校決賽.每個隊名選手的決賽成績如圖所示:
填表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中代表隊 | |||
高中代表隊 |
結合兩隊決賽成績的平均數(shù)和中位數(shù),分析哪個代表隊的成績較好;
計算兩隊決賽成績的方差,并判斷哪個代表隊的成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡,再求值:
(1)(3a2-ab+7)-(5ab-4a2+7),其中, a=2,b=;
(2)3(ab-5b2+2a2)-(7ab+16a2-25b2),其中|a-1|+(b+1)2=0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠現(xiàn)在的年產值是15萬元,計劃今后每年增產2萬元.
(1)寫出年產值y(萬元)與年數(shù)x之間的函數(shù)表達式,并畫出圖象;
(2)求6年后的年產值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=4,E為斜邊AB的中點,點P是射線BC的一個動點,連接AP、PE,將△AEP沿著邊PE疊,折疊后得到△EPA,當折疊后△EPA與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則BP的長__________
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com