【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點(diǎn),連接AE、CF.
(1)求證:四邊形AECF是矩形;
(2)若AB=6,求菱形的面積.
【答案】(1)證明見(jiàn)解析;(2)24
【解析】試題(1)首先證明△ABC是等邊三角形,進(jìn)而得出∠AEC=90°,四邊形AECF是平行四邊形,即可得出答案;
(2)利用勾股定理得出AE的長(zhǎng),進(jìn)而求出菱形的面積.
試題解析:(1)∵四邊形ABCD是菱形,
∴AB=BC,
又∵AB=AC,
∴△ABC是等邊三角形,
∵E是BC的中點(diǎn),
∴AE⊥BC,
∴∠AEC=90°,
∵E、F分別是BC、AD的中點(diǎn),
∴AF=AD,EC=BC,
∵四邊形ABCD是菱形,
∴AD∥BC且AD=BC,
∴AF∥EC且AF=EC,
∴四邊形AECF是平行四邊形,
又∵∠AEC=90°,
∴四邊形AECF是矩形;
(2)在Rt△ABE中,AE=,
所以,S菱形ABCD=6×3=18.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表給出了某班6名同學(xué)的身高情況(單位:cm).
學(xué)生 | A | B | C | D | E | F | |
身高(單位:cm) | 165 | ____ | 166 | ____ | ____ | 172 | |
身高與班級(jí)平 | 均身高的差值) | -1 | +2 | ____ | -3 | +4 | ____ |
(1)完成表中空的部分;
(2)他們6人中最高身高比最矮身高高多少?
(3)如果身高達(dá)到或超過(guò)平均身高時(shí)叫達(dá)標(biāo)身高,那么這6名同學(xué)身高的達(dá)標(biāo)率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的角平分線(xiàn),則圖中的等腰三角形有( 。
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過(guò)D點(diǎn)的直線(xiàn)GF交AC于F,交AC的平行線(xiàn)BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請(qǐng)你判斷BE+CF與EF的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE∥BC,DE=EF,AE=EC,則圖中的四邊形ADCF是__,四邊形BCFD是__.(選填“平行四邊形、矩形、菱形、正方形”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的不等式組 的解集為x>1,且關(guān)于x的分式方程 + =3有非負(fù)整數(shù)解,則符合條件的m的所有值的和是( )
A.﹣2
B.﹣4
C.﹣7
D.﹣8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】萬(wàn)州某運(yùn)輸公司的一艘輪船在長(zhǎng)江上航行,往返于萬(wàn)州、朝天門(mén)兩地。假設(shè)輪船在靜水中的速度不變,長(zhǎng)江的水流速度不變,該輪船從萬(wàn)州出發(fā),逆水航行到朝天門(mén),停留一段時(shí)間(卸貨、裝貨、加燃料等,)又順?biāo)叫蟹祷厝f(wàn)州,若該輪船從萬(wàn)州出發(fā)后所用時(shí)間為x(小時(shí)),輪船距萬(wàn)州的距離為y(千米),則下列各圖中,能反映y與x之間函數(shù)關(guān)系的圖象大致是【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,Rt△ABC中,∠C=90°,AC=3,BC=4.點(diǎn)D是AB邊上任意一點(diǎn),則CD的最小值為 。
(2)如圖②,在矩形ABCD中,AB=3,BC=4.點(diǎn)M、N分別在BD、BC上。求CM+MN的最小值.
(3)如圖③,在矩形ABCD中,AB=3,BC=4.點(diǎn)E是AB邊上的一點(diǎn),且AE=2,點(diǎn)F是BC邊上的任意一點(diǎn)。把△BEF沿EF翻折,點(diǎn)B對(duì)應(yīng)點(diǎn)G,連接AG、CG.四邊形AGCD的面積的最小值是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(a,b),點(diǎn)P的“變換點(diǎn)”P`的坐標(biāo)定義如下:當(dāng)時(shí),P`點(diǎn)坐標(biāo)為(a,-b);當(dāng)時(shí),P`點(diǎn)坐標(biāo)為(b,-a)。線(xiàn)段l:上所有點(diǎn)按上述“變換點(diǎn)”組成一個(gè)新的圖形,若直線(xiàn)與組成的新的圖形有兩個(gè)交點(diǎn),則k的取值范圍是( )
A. B. 或 C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com