【題目】某商店經銷一種紀念品,11月份的營業(yè)額為2 000元.為擴大銷售,12月份該商店對這種紀念品打九折銷售,結果銷售量增加20件,營業(yè)額增加700元.

1)求這種紀念品11月份的銷售單價;

211月份該商店銷售這種商品_______件;

3)若11月份銷售這種紀念品獲利800元,求12月份銷售這種紀念品獲利多少元?

【答案】150;(240;(3900

【解析】

1)設這種紀念品11月份的銷售單價為x元,然后根據(jù)營業(yè)額÷售價=件數(shù)的關系列分式方程解答即可;

2)用11月份的根據(jù)營業(yè)額÷11月份的售價即可;

3)先求出11月每件商品獲利,在求出11月份每件的成本,再求出12月每件的獲利,然后用12月每件獲利×件數(shù)即可解答.

解:(1)設這種紀念品11月份的銷售單價為x元,根據(jù)題意,得

解得

經檢驗:是原方程的解.

這種紀念品11月份的銷售單價為50元,

240

311月份每件商品獲利:800÷40=20(元),

11月份每件商品的成本:5020=30(元),

12月份每件商品獲利:50×0.930=15(元)

12月份共獲利:15×40+20=900(元)

∴ 12月份銷售這種紀念品獲利900元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,防洪大堤的橫斷面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同學在大堤上A點處用高1.5m的測量儀測出高壓電線桿CD頂端D的仰角為30°,己知地面BC寬30m,求高壓電線桿CD的高度(結果保留三個有效數(shù)字,1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,C,D是O上的點,且OCBD,AD分別與BC,OC相交于點E,F(xiàn),則下列結論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的____(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段圓弧與長度為1的正方形網格的交點是A、B、C.

(1)請完成以下操作:

①以點O為原點,垂直和水平方向為軸,網格邊長為單位長,建立平面直角坐標系;

②根據(jù)圖形提供的信息,標出該圓弧所在圓的圓心D,并連接AD、CD;

(2)請在(1)的基礎上,完成下列填空:⊙D的半徑為__________;點(6,–2)在⊙D__________;(填”、“”、“”)ADC的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點D是半圓O上一點,點C 的中點,CEAB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CECB于點P、Q,連接AC

1)求證:GPGD;

2)求證:P是線段AQ的中點;

3)連接CD,若CD2,BC4,求O的半徑和CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖拋物線y=x2+bx﹣c經過直線y=x﹣3與坐標軸的兩個交點A,B,此拋物線與x軸的另一個交點為C,拋物線的頂點為D.

(1)求此拋物線的解析式;

(2)求SABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李剛和常明兩人在數(shù)學活動課上進行折紙創(chuàng)編活動.李剛拿起一張準備好的長方形紙片對常明說:“我現(xiàn)在折疊紙片(圖①),使點D落在AB邊的點F處,得折痕AE,再折疊,使點C落在AE邊的點G處,此時折痕恰好經過點B,如果AD=,那么AB長是多少?常明說;簡單,我會. AB應該是_____”.

常明回答完,又對李剛說:你看我的創(chuàng)編(圖②),與你一樣折疊,可是第二次折疊時,折痕不經過點B,而是經過了AB邊上的M點,如果AD=,測得EC=3BM,那么AB長是多少?李剛思考了一會,有點為難,聰明的你,你能幫忙解答嗎?AB=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC∽△DEC,CA=CB,且點EAB的延長線上.

(1)求證:AE=BD;

(2)求證:△BOE∽△COD;

(3)已知CD=10,BE=5,OD=6,求OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊中,,現(xiàn)有兩點分別從點、同時出發(fā),沿三角形的邊運動,已知點的速度為,點的速度為.當點第一次回到點時,點、同時停止運動,設運動時間為.

1)當為何值時,兩點重合;

2)當點分別在、邊上運動,的形狀會不斷發(fā)生變化.

①當為何值時,是等邊三角形;

②當為何值時,是直角三角形;

3)若點、都在邊上運動,當存在以為底邊的等腰時,求的值.

查看答案和解析>>

同步練習冊答案