【題目】如圖,已知AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點D,過點B作BE⊥PD,交PD的延長線于點C,連接AD并延長,交BE于點E.
(1)求證:AB=BE;
(2)連結OC,如果PD=,∠ABC=,求OC的長.
【答案】(1)證明過程見解析;(2)OC=
【解析】
試題分析:(1)連接OD,根據(jù)OA=OD得出∠DAO=∠ADO,根據(jù)切線的性質得出PD⊥OD,從而說明OD∥BE,得出∠E=∠ADO,則∠E=∠DAO,從而說明答案;(2)根據(jù)OD∥BE,∠ABC=60°得出∠DOP=∠ABC=60°,根據(jù)tan∠DOP的值得出OD,OP和PB的長度,根據(jù)sin∠ABC的值得出PC和DC的長度,最后根據(jù)Rt△ODC的勾股定理求出OC的長度.
試題解析:(1)連結OD.
∵OA=OD,∴,
∵PD切⊙O于點D,∴PD⊥OD,
∵BE⊥PD, ∴OD∥BE,
∴,
∴,
∴AB=BE.
(2)∵OD∥BE,∠ABC=,
∴,
∵ PD⊥OD,
∴,
∴,
∴,
∴,
∴,
∴,
∴,
∴,
∴,
∴,
∴
∴(舍負).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船沿AC方向航行,輪船在點A時測得航線兩側的兩個燈塔D、E與航線的夾角相等,當輪船到達點B時測得這兩個燈塔與航線的夾角仍然相等,這時輪船與兩個燈塔的距離是否相等?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式中計算正確的是( 。
A. (x+y)2=x2+y2 B. (3x)2=6x2
C. (x3)2=x6 D. a2+a2=a4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB的垂直平分線CP交AB于點P,且AP=2PC,現(xiàn)欲在線段AB上求作兩點D,E,使其滿足AD=DC=CE=EB,對于以下甲、乙兩種作法:
甲:分別作∠ACP、∠BCP的平分線,分別交AB于D、E,則D、E即為所求;乙:分別作AC、BC的垂直平分線,分別交AB于D、E,則D、E兩點即為所求.下列說法正確的是( 。
A. 甲、乙都正確 B. 甲、乙都錯誤
C. 甲正確,乙錯誤 D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是( )
A.同一條弦所對的兩條弧一定是等弧
B.長度相等的兩條弧是等弧
C.正多邊形一定是軸對稱圖形
D.三角形的外心到三角形各邊的距離相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動,△ADE繞點A旋轉,連接BE、CD,F(xiàn)為BE的中點,連接AF.
(1)如圖①,當∠BAE=90°時,求證:CD=2AF;
(2)當∠BAE≠90°時,(1)的結論是否成立?請結合圖②說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com