【題目】如圖,已知點A是反比例函數(shù)y=的圖象在第一象限上的動點,連結AO并延長交另一分支于點B,以AB為邊作等邊△ABC使點C落在第二象限,且邊BC交x軸于點D,若△ACD與△ABD的面積之比為1:2,則點C的坐標為( 。
A. (﹣3,2) B. (﹣5,) C. (﹣6,) D. (﹣3,2)
【答案】C
【解析】
作CM⊥OD于M,AE⊥OD于E,作DF⊥AB于F,連接CO,根據(jù)等高的三角形的面積比等于底邊的比,可得DB=2CD,由△ABC是等邊三角形,且AO=BO可得CO⊥AB,CO=AO=BO,由DF∥CO可得OF=OB,DF=OB,根據(jù)△AOE∽△DOF 可得AE=2OE,根據(jù)AE×OE=2,可求A點坐標,再根據(jù)△OCM∽△AOE可求C點坐標.
如圖,作CM⊥OD于M,AE⊥OD于E,作DF⊥AB于F,連接CO.
根據(jù)題意得:AO=BO.
∵S△ACD:S△ADB=1:2,∴CD:DB=1:2即DB=2CD.
∵△ABC為等邊三角形且AO=BO,∴∠CBA=60°,CO⊥AB且DF⊥AB,∴DF∥CO,∴,∴DF=CO,BF=BO,即FO=BO.
∵∠CBA=60°,CO⊥AB,∴CO=BO,∴DF=BO.
∵∠DOF=∠AOE,∠DFO=∠AEO=90°,∴△DFO∽△AOE,∴,∴AE=2OE.
∵點A是反比例函數(shù)y=的圖象在第一象限上的動點,∴AE×OE=2,∴AE=2,OE=1.
∵∠COM+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COM=∠EAO,且∠CMO=∠AEO=90°,∴△OCM∽△AOE,∴,∴CM=,MO=6.
∵M在第二象限,∴M(﹣6,).
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系;折線BCD表示轎車離甲地距離y(千米)與x(小時)之間的函數(shù)關系.請根據(jù)圖象解答下列問題:
(1)轎車到達乙地后,貨車距乙地多少千米?
(2)求線段CD對應的函數(shù)解析式.
(3)轎車到達乙地后,馬上沿原路以CD段速度返回,求貨車從甲地出發(fā)后多長時間再與轎車相遇(結果精確到0.01).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一枚棋子放在七角棋盤的第0號角,現(xiàn)依逆時針方向移動這枚棋子,其各步依次移動1,2,3,…,n個角,如第一步從0號角移動到第1號角,第二步從第1號角移動到第3號角,第三步從第3號角移動到第6號角,….若這枚棋子不停地移動下去,則這枚棋子永遠不能到達的角的個數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學農期間我們完成了每日一題,進一步研究了角的平分線. 工人師傅常用角尺平分一個任意角. 作法如下:
如圖,∠AOB 是一個任意角,在邊 OA、OB 上分別取 OM=ON, 移動角尺,使角尺兩邊相同的刻度分別與 M、N 重合. 過角尺頂點 C 的射線 OC 便是∠AOB 的平分線. 我們發(fā)現(xiàn)利用 SSS 證明兩個三角形全等,從而證明∠AOC=∠BOC.
學習了軸對稱的知識后,我們知道角是軸對稱圖形,角平分線 所在直線就是它的對稱軸,愛動腦筋的小慧同學利用軸對稱圖形的性質發(fā)現(xiàn)了一種畫角平分線的方法.
方法如下:如圖 1,將兩個全等的三角形紙片△DEF 和△MNL 的一組對應邊分別與∠AOB 的一邊共線,同時這條邊所對頂點落在∠AOB 的另一條邊上,則△DEF 和△MNL 的另一組對應邊的交點 P 在∠AOB 的平分線上.
(1)小慧的做法正確嗎?說明理由:
小旭說:利用軸對稱的性質,我只用刻度尺就可以畫角平分線.(提示:刻度尺可以度量出相等的線段)
(2)請你和小旭一樣,只用刻度尺畫出圖 2 中∠QRS 的角平分線.(保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,設點A(0,4)、B(3,8).若點P(x,0),使得∠APB最大,則x=( 。
A. 3 B. 0 C. 4 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB邊上的中點,點D、E分別在AC、BC邊上運動,且始終保持AD=CE.連接DE、DF、EF.
(1)求證:△ADF≌△CEF;
(2)試證明△DFE是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函雙y=(m≠0)的陽象交于點c(n,3),與x軸、y軸分別交于點A、B,過點C作CM⊥x軸,垂足為M,若tan∠CAM=,OA=2.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點D是反比例函數(shù)圖象在第三象限部分上的一點,且到x軸的距離是3,連接AD、BD,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E是正方形ABCD中CD邊上一點,以點A為中心把△ADE順時針旋轉90°。
(1)在圖中畫出旋轉后的圖形;
(2)若旋轉后E點的對應點記為M,點F在BC上,且∠EAF=45°,連接EF。
①求證:△AMF≌△AEF;
②若正方形的邊長為6,AE=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞A逆時針方向旋轉40°得到△ADE,點B經過的路徑為弧BD,是圖中陰影部分的面積為( 。
A. π﹣6 B. π C. π﹣3 D. +π
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com