【題目】如圖,在平面直角坐標系中,⊙C與y軸相切,且C點坐標為(2,0),直線l過點A(﹣2,0),與⊙C相切于點D,求直線l的解析式.
【答案】解:如圖所示,當直線l在x軸的上方時,
連接CD,
∵直線l為⊙C的切線,
∴CD⊥AD.
∵C點坐標為(2,0),
∴OC=2,即⊙C的半徑為2,
∴CD=OC=2.
又∵點A的坐標為(﹣2,0),
∴AC=4,
∴AC=2CD,
∴∠CAD=30°,
在Rt△AOB中,OB=OAtan30°= ,
即B(0, ),
設直線l解析式為:y=kx+b(k≠0),則 ,
解得k= ,b= ,
∴直線l的函數(shù)解析式為y= x+ .
同理可得,當直線l在x軸的下方時,直線l的函數(shù)解析式為y=﹣ x﹣ .
故直線l的函數(shù)解析式為y= x+ 或y=﹣ x﹣ .
【解析】連接CD,由于直線l為⊙C的切線,故CD⊥AD.結合點與坐標的性質求得點B的坐標,設直線l的函數(shù)解析式為y=kx+b,把A,B兩點的坐標代入即可求出未知數(shù)的值從而求出其解析式.
【考點精析】利用確定一次函數(shù)的表達式和切線的性質定理對題目進行判斷即可得到答案,需要熟知確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;切線的性質:1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖, 是邊長為3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是,當點P到達點B時,P、Q兩點停止運動,設點P的運動時間,解答下列各問題:
經(jīng)過秒時,求的面積;
當t為何值時, 是直角三角形?
是否存在某一時刻t,使四邊形APQC的面積是面積的三分之二?如果存在,求出t的值;不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù)y=ax2+bx+c(a>0)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點,A點在原點的左側,B點的坐標為(3,0),OB=OC,OC=3OA.
(1)求這個二次函數(shù)的表達式;
(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)一批零件,根據(jù)要求,圓柱體的內(nèi)徑可以有0.03毫米的誤差,抽查5個零件,超過規(guī)定內(nèi)徑的記作正數(shù),不足的記作負數(shù),檢查結果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041
(1)指出哪些產(chǎn)品合乎要求?
(2)指出合乎要求的產(chǎn)品中哪個質量好一些?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:矩形ABCD中AB=2,BC= ,⊙A是以A為圓心,半徑r=1的圓,若⊙A繞著點B順時針旋轉,旋轉角為α( 0°<α<180°);當旋轉后的圓與矩形ABCD的邊相切時,α=度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次食品安檢中,抽查某企業(yè) 10 袋奶粉,每袋取出 100 克,檢測每 100
克奶粉蛋白質含量與規(guī)定每 100 克含量(蛋白質)比較,不足為負,超過為正, 記錄如下:(注:規(guī)定每 100g 奶粉蛋白質含量為 15g)
﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5
(1)求平均每 100 克奶粉含蛋白質為多少?
(2)每 100 克奶粉含蛋白質不少于 14 克為合格,求合格率為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育課上,對七年級1班的男生進行了100米測試,達標成績?yōu)?5秒,下表是某小組8名男生的成績測試記錄,其中“+“表示成績大于15秒.
-0.8 | +1 | -1.2 | 0 | -0.7 | +0.6 | -0.4 | -0.1 |
問:(1)這個小組男生的達標率為多少?
(2)這個小組男生的平均成績是多少秒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于A(2,4)、B(4,n)兩點.
(1)分別求出和的解析式;
(2)求=時,x的值;
(3)根據(jù)圖象直接寫出>時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù) (為常數(shù),且)的圖像交于
兩點.
(1)求反比例函數(shù)的表達式;
(2)在軸上找一點,使的值最小,求滿足條件的點的坐標;
(3)在(2)的條件下求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com