【題目】問(wèn)題情境:在綜合實(shí)踐課上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開(kāi)展數(shù)學(xué)活動(dòng),如圖(1),將一張菱形紙片ABCD(∠BAD=60°)沿對(duì)角線AC剪開(kāi),得到△ABC和△ACD
操作發(fā)現(xiàn):(1)將圖(1)中的△ABC以A為旋轉(zhuǎn)中心,順時(shí)針?lè)较蛐D(zhuǎn)角α(0°<α<60°)得到如圖(2)所示△ABC′,分別延長(zhǎng)BC′和DC交于點(diǎn)E,發(fā)現(xiàn)CE=C′E.請(qǐng)你證明這個(gè)結(jié)論.
(2)在問(wèn)題(1)的基礎(chǔ)上,當(dāng)旋轉(zhuǎn)角α等于多少度時(shí),四邊形ACEC′是菱形?請(qǐng)你利用圖(3)說(shuō)明理由.
拓展探究:(3)在滿足問(wèn)題(2)的基礎(chǔ)上,過(guò)點(diǎn)C′作C′F⊥AC,與DC交于點(diǎn)F.試判斷AD、DF與AC的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)當(dāng)α=30°時(shí),四邊形AC′EC是菱形,理由見(jiàn)解析;(3)AD+DF=AC,理由見(jiàn)解析
【解析】
(1)先判斷出∠ACC′=∠AC′C,進(jìn)而判斷出∠ECC′=∠EC′C,即可得出結(jié)論;
(2)判斷出四邊形AC′EC是平行四邊形,即可得出結(jié)論;
(3)先判斷出HAC′是等邊三角形,得出AH=AC′,∠H=60°,再判斷出△HDF是等邊三角形,即可得出結(jié)論.
(1)證明:如圖2,連接CC′,
∵四邊形ABCD是菱形,
∴∠ACD=∠AC′B=30°,AC=AC′,
∴∠ACC′=∠AC′C,
∴∠ECC′=∠EC′C,
∴CE=C′E;
(2)當(dāng)α=30°時(shí),四邊形AC′EC是菱形,
理由:∵∠DCA=∠CAC′=∠AC′B=30°,
∴CE∥AC′,AC∥C′E,
∴四邊形AC′EC是平行四邊形,
又∵CE=C′E,
∴四邊形AC′EC是菱形;
(3)AD+DF=AC.
理由:如圖4,分別延長(zhǎng)CF與AD交于點(diǎn)H,
∵∠DAC=∠C′AC=30°,C′F⊥AC,
∴∠AC′H=∠DAC′=60°,
∴△HAC′是等邊三角形,
∴AH=AC′,∠H=60°,
又∵AD=DC,
∴∠DAC=∠DCA=30°,
∴∠HDC=∠DAC+∠DCA=60°,
∴△HDF是等邊三角形,
∴DH=DF,
∴AD+DF=AD+DH=AH.
∵AC′=AC,
∴AC=AD+DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=x2﹣2x+m的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,直線AC交二次函數(shù)圖象的對(duì)稱(chēng)軸于點(diǎn)D,若點(diǎn)C為AD的中點(diǎn).
(1)求m的值;
(2)若二次函數(shù)圖象上有一點(diǎn)Q,使得tan∠ABQ=3,求點(diǎn)Q的坐標(biāo);
(3)對(duì)于(2)中的Q點(diǎn),在二次函數(shù)圖象上是否存在點(diǎn)P,使得△QBP∽△COA?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點(diǎn)C,BD平分∠ABF,且交AE于點(diǎn)D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為提高學(xué)生身體素質(zhì),決定開(kāi)展足球、籃球、臺(tái)球、乒乓球四項(xiàng)課外體育活動(dòng),并要求學(xué)生必須并且只能選擇一項(xiàng).為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制出以下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題.(要求寫(xiě)出簡(jiǎn)要的解答過(guò)程)
(1)這次活動(dòng)一共調(diào)查了多少名學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該學(xué)??cè)藬?shù)是1300人,請(qǐng)估計(jì)選擇籃球項(xiàng)目的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)用14500元購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷(xiāo)售價(jià)如表(二)所示:
類(lèi)別 | 成本價(jià)(元/箱) | 銷(xiāo)售價(jià)(元/箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?
(2)該商場(chǎng)售完這500箱礦泉水,可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)(4,0),其部分圖象如圖所示,下列結(jié)論:①拋物線過(guò)原點(diǎn);②a﹣b+c<0;③4a+b+c=0;④拋物線的頂點(diǎn)坐標(biāo)為(2,b);⑤當(dāng)x<1時(shí),y隨x增大而增大.其中結(jié)論正確的是( 。
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,點(diǎn)、分別在邊、上,根據(jù)下列給定的條件,不能判斷與平行的是( )
A. AD=6,BD=4,AE=2.4,CE=1.6
B. BD=2,AB=6,CE=1,AC=3;
C. AD=4,AB=6,DE=2,BC=3;
D. AD=4,AB=6,AE=2,AC=3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與直線y=﹣x﹣2相交于A(﹣2,0),B(m,﹣6)兩點(diǎn),且拋物線經(jīng)過(guò)點(diǎn)C (5,0).點(diǎn)P是直線下方的拋物線上異于A、B的動(dòng)點(diǎn).過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線于點(diǎn)E.
(1)求拋物線的解析式;
(2)連結(jié)PA、PB、BD,當(dāng)S△ADBS△PAB時(shí),求S△PAB;
(3)是否存在點(diǎn)P,使得△PBE為直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com