精英家教網 > 初中數學 > 題目詳情

如圖所示,在梯形ABCD中,AD∥BC,AE⊥BC于E,若AE=12,BD=15,AC=20,求梯形ABCD的面積.

解:過點D作DF⊥BC于F,則四邊形ADFE是矩形,有DF=AE=12,EF=AD,
∴BF==9,EC==16,
∴BF+EC=BE+EF+FC+AD=BC+AD=25,
∴梯形的面積=(BC+AD)•AE=×25×12=150.
分析:過點D作DF⊥BC于F,則四邊形ADFE是矩形,利用勾股定理求得BF==9,EC==16,于是有BF+EC=BC+AD=25,梯形的面積=(BC+AD)•AE=×25×12=150.
點評:本題考查梯形,矩形、直角三角形的相關知識.解決此類題要懂得用梯形的常用輔助線,把梯形分割為矩形和直角三角形,從而由矩形和直角三角形的性質來求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知如圖所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,連接AC.
(1)求cos∠ACB的值;
(2)若E、F分別是AB、DC的中點,連接EF,求線段EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點M是線段BC上一定點,且MC=8.動點P從C點出發(fā)沿C?D?A?B的路線運動,運動到點B停止.在點P的運動過程中,使△PMC為等腰三角形的點P有
 
個.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點M是線段BC上一定點,且MC=8.動點P從C點出發(fā)沿C→D→A→B的路線運動,運動到點B停止.在點P的運動過程中,使△PMC為等腰三角形的點P有幾個?并求出相應等腰三角形的腰長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,DO垂直于AB.則腰長是
 
.若P是梯形的對稱軸L上的點,那么使△PDB為等腰三角形的點有
 
個.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,在梯形ABCD中,AB∥DC,EF是梯形的中位線,AC交EF于G,BD交EF于H,以下說法錯誤的是(  )

查看答案和解析>>

同步練習冊答案