【題目】如圖1,在四邊形ABCD中,AB=AD. ∠B+∠ADC=180°,點(diǎn)E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.
圖1 圖2 圖3
(1)思路梳理
將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點(diǎn)F,D,G三點(diǎn)共線. 易證△AFG ,故EF,BE,DF之間的數(shù)量關(guān)系為 ;
(2)類比引申
如圖2,在圖1的條件下,若點(diǎn)E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°. 若BD=1,EC=2,則DE的長為 .
【答案】(1)△AFE. EF=BE+DF.(2)BF=DF-BE,理由見解析;(3)
【解析】試題分析:(1)先根據(jù)旋轉(zhuǎn)得: 計(jì)算 即點(diǎn)共線,再根據(jù)SAS證明△AFE≌△AFG,得EF=FG,可得結(jié)論EF=DF+DG=DF+AE;
(2)如圖2,同理作輔助線:把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,證明△EAF≌△GAF,得EF=FG,所以EF=DFDG=DFBE;
(3)如圖3,同理作輔助線:把△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ACG,證明△AED≌△AEG,得,先由勾股定理求的長,從而得結(jié)論.
試題解析:(1)思路梳理:
如圖1,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,可使AB與AD重合,即AB=AD,
由旋轉(zhuǎn)得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,
∴∠FDG=∠ADF+∠ADG=+=,
即點(diǎn)F. D.G共線,
∵四邊形ABCD為矩形,
∴∠BAD=,
∵∠EAF=,
∴
∴
∴
在△AFE和△AFG中,
∵
∴△AFE≌△AFG(SAS),
∴EF=FG,
∴EF=DF+DG=DF+AE
故答案為:△AFE,EF=DF+AE;
(2)類比引申:
如圖2,EF=DFBE,理由是:
把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,可使AB與AD重合,則G在DC上,
由旋轉(zhuǎn)得:BE=DG,∠DAG=∠BAE,AE=AG,
∵∠BAD=,
∴∠BAE+∠BAG=,
∵∠EAF=,
∴∠FAG==,
∴∠EAF=∠FAG=,
在△EAF和△GAF中,
∵
∴△EAF≌△GAF(SAS),
∴EF=FG,
∴EF=DFDG=DFBE;
(3)聯(lián)想拓展:
如圖3,把△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ACG,可使AB與AC重合,連接EG,
由旋轉(zhuǎn)得:AD=AG,∠BAD=∠CAG,BD=CG,
∵∠BAC=,AB=AC,
∴∠B=∠ACB=,
∴∠ACG=∠B=,
∴∠BCG=∠ACB+∠ACG=+=,
∵EC=2,CG=BD=1,
由勾股定理得:
∵∠BAD=∠CAG,∠BAC=
∴∠DAG=,
∵∠BAD+∠EAC=,
∴∠CAG+∠EAC==∠EAG,
∴∠DAE=,
∴∠DAE=∠EAG=,
∵AE=AE,
∴△AED≌△AEG,
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上的一點(diǎn),CF切半圓O于點(diǎn)C,BD⊥CF于為點(diǎn)D,BD與半圓O交于點(diǎn)E.
(1)求證:BC平分∠ABD.
(2)若DC=8,BE=4,求圓的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是的一條角平分線.點(diǎn)、、分別在、、上,且四邊形是正方形.
(1)求證:點(diǎn)在的平分線上;
(2)若,,且正方形的面積為4,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸的交點(diǎn)分別為A(﹣6,0)和點(diǎn)B(4,0),與y軸的交點(diǎn)為C(0,3).
(1)求拋物線的解析式;
(2)點(diǎn)P是線段OA上一動點(diǎn)(不與點(diǎn)A重合),過P作平行于y軸的直線與AC交于點(diǎn)Q,點(diǎn)D、M在線段AB上,點(diǎn)N在線段AC上.
①是否同時(shí)存在點(diǎn)D和點(diǎn)P,使得△APQ和△CDO全等,若存在,求點(diǎn)D的坐標(biāo),若不存在,請說明理由;
②若∠DCB=∠CDB,CD是MN的垂直平分線,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.
(1)求證:四邊形OCAD是平行四邊形;
(2)填空:①當(dāng)∠B= 時(shí),四邊形OCAD是菱形;
②當(dāng)∠B= 時(shí),AD與相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90 ,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個(gè)動點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動,且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動,且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動時(shí),出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動時(shí),求能使△BCQ成為等腰三角形的運(yùn)動時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)在上,過點(diǎn)作的切線,延長到,使,連接,,與交于點(diǎn).若的半徑為,,則的外接圓的半徑為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),點(diǎn)B2019的坐標(biāo)為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com