【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.
(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.
①如圖1,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和 的值.
【答案】
(1)
證明:∵點C、D、E分別是OA,OB,AB的中點,
∴DE=OC,∥OC,CE=OD,CE∥OD,
∴四邊形ODEC是平行四邊形,
∴∠OCE=∠ODE,
∵△OAP,△OBQ是等腰直角三角形,
∴∠PCO=∠QDO=90°,
∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,
∵PC= AO=OC=ED,CE=OD= OB=DQ,
在△PCE與△EDQ中, ,
∴△PCE≌△EDQ;
(2)
解:①如圖2,
連接RO,
∵PR與QR分別是OA,OB的垂直平分線,
∴AP=OR=RB,
∴∠ARC=∠ORC,∠ORQ=∠BRO,
∵∠RCO=∠RDO=90°,∠COD=150°,
∴∠CRD=30°,
∴∠ARB=60°,
∴△ARB是等邊三角形;
②由(1)得,EQ=EP,∠DEQ=∠CPE,
∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,
∴△PEQ是等腰直角三角形,
∵△ARB∽△PEQ,
∴∠ARB=∠PEQ=90°,
∴∠OCR=∠ODR=90°,∠CRD= ∠ARB=45°,
∴∠MON=135°,
此時P,O,B在一條直線上,△PAB為直角三角形,且∠APB=90°,
∴AB=2PE=2× PQ= PQ,
∴ =
【解析】(1)根據(jù)三角形中位線的性質得到DE=OC,∥OC,CE=OD,CE∥OD,推出四邊形ODEC是平行四邊形,于是得到∠OCE=∠ODE,根據(jù)等腰直角三角形的定義得到∠PCO=∠QDO=90°,根據(jù)等腰直角三角形的性質得到得到PC=ED,CE=DQ,即可得到結論(2)①連接RO,由于PR與QR分別是OA,OB的垂直平分線,得到AP=OR=RB,由等腰三角形的性質得到∠ARC=∠ORC,∠ORQ=∠BRO,根據(jù)四邊形的內角和得到∠CRD=30°,即可得到結論;
②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,證得△PEQ是等腰直角三角形,根據(jù)相似三角形的性質得到ARB=∠PEQ=90°,根據(jù)四邊形的內角和得到∠MON=135°,求得∠APB=90°,根據(jù)等腰直角三角形的性質得到結論.本題考查了相似三角形的判定和性質,等腰直角三角形的性質,全等三角形的判定和性質,平行四邊形的判定和性質,等邊三角形的判定和性質,線段垂直平分線的性質,熟練掌握等腰直角三角形的性質是解題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正△ABC的邊長為4,點P為BC邊上的任意一點(不與點B、C重合),且∠APD=60°,PD交AB于點D.設BP=x,BD=y,則y關于x的函數(shù)圖象大致是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某自行車公司調查陽光中學學生對其產品的了解情況,隨機抽取部分學生進行問卷,結果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調查結果繪制了如下尚不完整的統(tǒng)計圖.
(1)本次問卷共隨機調查了名學生,扇形統(tǒng)計圖中m= .
(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖.
(3)若該校有1000名學生,估計選擇“非常了解”、“比較了解”共約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥BC,射線CM⊥BC,且BC=4,AB=1,點P是線段BC(不與點B、C重合)上的動點,過點P作DP⊥AP交射線CM于點D,連結AD.
(1)如圖1,若BP=3,求△ABP的周長;
(2)如圖2,若DP平分∠ADC,試猜測PB和PC的數(shù)量關系,并說明理由;
(3)若△PDC是等腰三角形,作點B關于AP的對稱點B′,連結B′D,則B′D=_____.(請直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按要求回答問題
(1)觀察下列圖形與等式的關系,并填空:
(2)觀察下圖,根據(jù)(1)中結論,計算圖中黑球的個數(shù),用含有n的代數(shù)式填空:
1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解本校學生對球類運動的愛好情況,采用抽樣的方法,從足球、籃球、排球、其它等四個方面調查了若干名學生,并繪制成“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”.請你根據(jù)圖中提供的部分信息解答下列問題:
(1)在這次調查活動中,一共調查了名學生;
(2)“足球”所在扇形的圓心角是度;
(3)補全折線統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系XOY中,直線l1過點A(1,0)且與y軸平行,直線l2過點B(0,2)且與x軸平行,直線l1與直線l2相交于點P.點E為直線l2上一點,反比例函數(shù) (k>0)的圖象過點E與直線l1相交于點F.
(1)若點E與點P重合,求k的值;
(2)連接OE、OF、EF.若k>2,且△OEF的面積為△PEF的面積的2倍,求E點的坐標;
(3)是否存在點E及y軸上的點M,使得以點M、E、F為頂點的三角形與△PEF全等?若存在,求E點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角三角形紙片ABC的∠C為90°,將三角形紙片沿著圖示的中位線DE剪開,然后把剪開的兩部分重新拼接成不重疊的圖形,下列選項中不能拼出的圖形是( )
A.平行四邊形
B.矩形
C.等腰梯形
D.直角梯形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com