【題目】某公司生產(chǎn)的某種商品每件成本為20元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)40天內(nèi)的日銷(xiāo)售量m(件)與時(shí)間t(天)的關(guān)系如下表:

時(shí)間t(天)

1

3

5

10

36

日銷(xiāo)售量m(件)

94

90

86

76

24

未來(lái)40天內(nèi),前20天每天的價(jià)格y1(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y1= t+25(1≤t≤20且t為整數(shù)),后20天每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y2=﹣ t+40(21≤t≤40且t為整數(shù)).
下面我們就來(lái)研究銷(xiāo)售這種商品的有關(guān)問(wèn)題:
(1)認(rèn)真分析上表中的數(shù)據(jù),用所學(xué)過(guò)的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的m(件)與t(天)之間的表達(dá)式;
(2)請(qǐng)預(yù)測(cè)未來(lái)40天中哪一天的日銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少?

【答案】
(1)解:經(jīng)分析知:m與t成一次函數(shù)關(guān)系.設(shè)m=kt+b(k≠0),

將t=1,m=94,t=3,m=90

代入 ,

解得

∴m=﹣2t+96;


(2)解:前20天日銷(xiāo)售利潤(rùn)為P1元,后20天日銷(xiāo)售利潤(rùn)為P2元,

則P1=(﹣2t+96)( t+25﹣20)=﹣ (t﹣14)2+578,

∴當(dāng)t=14時(shí),P1有最大值,為578元.

P2=(﹣2t+96)( t+40﹣20)=﹣t2+8t+1920=(t﹣44)2﹣16,

∵當(dāng)21≤t≤40時(shí),P2隨t的增大而減小,

∴t=21時(shí),P2有最大值,為513元.

∵513<578,

∴第14天日銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)為578元


【解析】(1)從表格可看出每天比前一天少銷(xiāo)售2件,所以判斷為一次函數(shù)關(guān)系式;(2)日利潤(rùn)=日銷(xiāo)售量×每件利潤(rùn),據(jù)此分別表示前20天和后20天的日利潤(rùn),根據(jù)函數(shù)性質(zhì)求最大值后比較得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.

(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.

①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP= ,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的兩個(gè)根,則實(shí)數(shù)x1 , x2 , a,b的大小關(guān)系為(
A.x1<x2<a<b
B.x1<a<x2<b
C.x1<a<b<x2
D.a<x1<b<x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)的某種商品每件成本為20元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)40天內(nèi)的日銷(xiāo)售量m(件)與時(shí)間t(天)的關(guān)系如下表:

時(shí)間t(天)

1

3

5

10

36

日銷(xiāo)售量m(件)

94

90

86

76

24

未來(lái)40天內(nèi),前20天每天的價(jià)格y1(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y1= t+25(1≤t≤20且t為整數(shù)),后20天每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y2=﹣ t+40(21≤t≤40且t為整數(shù)).
下面我們就來(lái)研究銷(xiāo)售這種商品的有關(guān)問(wèn)題:
(1)認(rèn)真分析上表中的數(shù)據(jù),用所學(xué)過(guò)的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的m(件)與t(天)之間的表達(dá)式;
(2)請(qǐng)預(yù)測(cè)未來(lái)40天中哪一天的日銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組: ,并寫(xiě)出其整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組: ,并寫(xiě)出其整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長(zhǎng)線交于點(diǎn)F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,海中有一小島A,它周?chē)?海里內(nèi)有暗礁,漁船跟蹤魚(yú)群由西向東航行,在B點(diǎn)測(cè)得小島A在北偏東60°方向上,航行12海里到達(dá)D點(diǎn),這時(shí)測(cè)得小島A在北偏東30°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒(méi)有觸礁的危險(xiǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案