【題目】已知二次函數(shù)的圖象與軸交于點(diǎn)C,過點(diǎn)CCD軸交該函數(shù)的圖象于點(diǎn)D,過點(diǎn)DDE軸交軸于點(diǎn)E,已知點(diǎn)F1,0),連接DF.

1)請求出該函數(shù)圖象的項(xiàng)點(diǎn)坐標(biāo)(用含的代數(shù)式表示);

2)如圖,若該二次函數(shù)的圖象的頂點(diǎn)落在軸上,P為對稱軸右側(cè)拋物線上一點(diǎn);

①連接PD、PE、PF,若,求點(diǎn)P的坐標(biāo);

②若∠PFD=DEF,點(diǎn)P的橫坐標(biāo)為m,則m的值為 .

【答案】1)頂點(diǎn)坐標(biāo)(2,);(2)①P,);②

【解析】

1)根據(jù)頂點(diǎn)坐標(biāo)公式,代入計算即可;

2)該二次函數(shù)的圖象的頂點(diǎn)落在軸上,可求得a的值,即可得函數(shù)解析式①由FD坐標(biāo)可求得直線FD的解析式,設(shè)可得Q點(diǎn)坐標(biāo),分別表達(dá)出 以及,列出方程計算即可得出m的值;②連接CE,交FDN,延長FPCEM,由條件可得△CND∽△FNM,聯(lián)立FD解析式可求得,由長度公式可算出可求得 ,設(shè)Mt,-t+4),列出方程 求出 可得直線FM的函數(shù)解析式: ,聯(lián)立拋物線解析式即可求出交點(diǎn)的橫坐標(biāo)m.

1)∵

∴頂點(diǎn)坐標(biāo)為(2,4-4a

2該二次函數(shù)的圖象的頂點(diǎn)落在軸上

4-4a=0

a=1

設(shè)直線FD的解析式為

F(1,0) D(4,4)代入可得:

∴設(shè)

當(dāng)

當(dāng)m=4,P4,4)時,P、D重合,不存在△PDE以及△PDF

連接CE,交FDN,延長FPCEM

∵∠PFD=DEF

∴∠DCE=NFP=45°

∵∠DNC=MNF

∴△CND∽△FNM

C0,4),E4,0

設(shè)Mt,-t+4

(舍去)

(舍去)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+c(a0)y軸交于點(diǎn)A,將點(diǎn)A向右平移2個單位長度,得到點(diǎn)B.直線x軸,y軸分別交于點(diǎn)C,D.

1)求拋物線的對稱軸.

2)若點(diǎn)A與點(diǎn)D關(guān)于x軸對稱.

①求點(diǎn)B的坐標(biāo).

②若拋物線與線段BC恰有一個公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年中國北京世界園藝博覽會(以下簡稱世園會”)429日至107日在北京延慶區(qū)舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:解密世園會、愛我家,愛園藝、園藝小清新之旅快速車覽之旅.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.

(1)李欣選擇線路園藝小清新之旅的概率是多少?

(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一段長為28m的鐵絲網(wǎng)與一面長為8m的墻面圍成一個矩形菜園,為了使菜園面積盡可能的大,給出了甲、乙兩種圍法,請通過計算來說明這個菜園長、寬各為多少時,面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,EBC的中點(diǎn),將ABE沿直線AE折疊后,點(diǎn)B落在點(diǎn)F處,AF交對角線BD于點(diǎn)G,則FG的長是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象和都在第一象限內(nèi),,軸,且,點(diǎn)的坐標(biāo)為

1)若反比例函數(shù)的圖象經(jīng)過點(diǎn)B,求此反比例函數(shù)的解析式;

2)若將向下平移m>0)個單位長度,,兩點(diǎn)的對應(yīng)點(diǎn)同時落在反比例函數(shù)圖象上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+c經(jīng)過點(diǎn)(﹣1,0),對稱軸是x1,現(xiàn)有結(jié)論:abc0 ②9a3b+c0 ③b=﹣2a1b+c0,其中正確的有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是銳角ABC的外接圓,FH是⊙O的切線,切點(diǎn)為F,FHBC,連結(jié)AFBCE,∠ABC的平分線BDAFD,連結(jié)BF.下列結(jié)論:①AF平分∠BAC;②點(diǎn)FBDC的外心;③;④若點(diǎn)M,N分別是ABAF上的動點(diǎn),則BN+MN的最小值是ABsinBAC.其中一定正確的是_____(把你認(rèn)為正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).

(1)請你用畫樹狀圖或列表的方法,寫出點(diǎn)M所有可能的坐標(biāo);

(2)求點(diǎn)M(x,y)在函數(shù)y=﹣的圖象上的概率.

查看答案和解析>>

同步練習(xí)冊答案