(2009•包頭)如圖,線段AB、DC分別表示甲、乙兩建筑物的高,AB⊥BC,DC⊥BC,從B點測得D點的仰角α為60°從A點測得D點的仰角β為30°,已知甲建筑物高AB=36米.
(1)求乙建筑物的高DC;
(2)求甲、乙兩建筑物之間的距離BC(結(jié)果精確到0.01米).
(參考數(shù)據(jù):≈1.414,≈1.732)

【答案】分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及到兩個直角三角形△ADE、△DBC,應(yīng)借助AE=BC得到方程求解.
解答:解:(1)過點A作AE⊥CD于點E.
根據(jù)題意,得∠DBC=∠α=60°,∠DAE=∠β=30°,AE=BC,EC=AB=36.
設(shè)DE=x,則DC=DE+EC=x+36.
在Rt△AED中,tan∠DAE=tan30°=,
∴AE=x,∴BC=AE=x.
在Rt△DCB中,tan∠DBC=tan60°=,
=,
∴3x=x+36,
x=18,
經(jīng)檢驗x=18是原方程的解.
∴DC=54(米).
答:乙建筑物的高DC為54米;

(2)∵BC=AE=x,x=18,
∴BC=×18=18×1.732≈31.18(米).
答:甲、乙兩建筑物之間的距離BC為31.18米.
點評:本題要求學(xué)生借助仰角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一元一次方程》(02)(解析版) 題型:解答題

(2009•包頭)如圖,已知△ABC中,AB=AC=10厘米,BC=8厘米,點D為AB的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運(yùn)動,同時,點Q在線段CA上由C點向A點運(yùn)動.
①若點Q的運(yùn)動速度與點P的運(yùn)動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運(yùn)動速度與點P的運(yùn)動速度不相等,當(dāng)點Q的運(yùn)動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運(yùn)動速度從點C出發(fā),點P以原來的運(yùn)動速度從點B同時出發(fā),都逆時針沿△ABC三邊運(yùn)動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年內(nèi)蒙古包頭市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•包頭)如圖,線段AB、DC分別表示甲、乙兩建筑物的高,AB⊥BC,DC⊥BC,從B點測得D點的仰角α為60°從A點測得D點的仰角β為30°,已知甲建筑物高AB=36米.
(1)求乙建筑物的高DC;
(2)求甲、乙兩建筑物之間的距離BC(結(jié)果精確到0.01米).
(參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年內(nèi)蒙古包頭市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•包頭)如圖,已知一次函數(shù)y=x+1的圖象與反比例函數(shù)的圖象在第一象限相交于點A,與x軸相交于點C,AB⊥x軸于點B,△AOB的面積為1,則AC的長為    (保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年內(nèi)蒙古包頭市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•包頭)如圖,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A與BC相切于點D,且交AB,AC于M,N兩點,則圖中陰影部分的面積是    (保留π).

查看答案和解析>>

同步練習(xí)冊答案