【題目】如圖,等腰三角形ABC中,ACBC10,AB12. BC為直徑作⊙OAB于點D,交AC于點G,DFAC,垂足為F,交CB的延長線于點E.

(1)求證:直線EF是⊙O的切線;

(2)sinE的值.

【答案】(1)證明見解析;(2).

【解析】

1)求證直線EF是⊙O的切線,只要連接OD證明ODEF即可;
2)根據(jù)∠E=CBG,可以把求sinE的值得問題轉化為求sinCBG,進而轉化為求RtBCG中,兩邊的比的問題.

(1)連結OD, CD.

BC是直徑,

CDAB.

AC=BC,

DAB的中點.

OBC中點,

ODAC.

DFAC,

ODEF.

∴直線EF是⊙O的切線.

(2)連結BG.

BC是直徑,

∴∠BGC=90°.

RtBCD, CD=.

AB·CD=AC·BG,

BG=.

RtBGC中, CG=.

BGEF,

∴∠E=CBG.

sinE=sinCBG=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB與函數(shù)yx>0)的圖象交于點Am,2),B(2,n).過點AAC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使ODOC,且ACD的面積是6,連接BC

(1)求mk,n的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點 (不與B,C重合),∠ADE=∠B=α,DEAC于點E,且 .下列結論: ①△ADE∽△ACD;BD=6時,△ABD△DCE全等;③△DCE為直角三角形時,BD8;④CD2=CECA.其中正確的結論是________(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,PC切⊙O于C交AB的延長線于點P,∠CAP=35°,那么∠CPO的度數(shù)等于(  。

A. 15° B. 20° C. 25° D. 30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠MAN30°O為邊AN上一點,以點O為圓心,2為半徑作⊙O,交AND,E兩點,設ADx.

(1)如圖①,當x取何值時,⊙OAM相切?

(2)如圖②,當x為何值時,⊙OAM相交于BC兩點,且∠BOC90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組的同學在一次活動中,為了測量某建筑物AB的高,他們來到另一建筑物CD上的點C處進行觀察,如圖所示,他們測得建筑物AB頂部A的仰角為30°,底部B的俯角為45°,已知建筑物AB、CD的距離DB為12m,求建筑物AB的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是從一副撲克牌中取出的兩組牌,分別是黑桃1,2,3,4和方塊1,2,3,4,將它們背面朝上分別重新洗牌后,從兩組牌中各摸出一張,那么摸出的兩張牌的牌面數(shù)字之和等于5的概率是多少?請你用列舉法(列表或畫樹狀圖)加以分析說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鳳城商場經(jīng)銷一種高檔水果,售價為每千克50

1)連續(xù)兩次降價后售價為每千克32元,若每次下降的百分率相同.求平均下降的百分率;

2)已知這種水果的進價為每千克40元,每天可售出500千克,經(jīng)市場調查發(fā)現(xiàn),若每千克漲價1元,日銷售量將減少20千克,每千克應漲價多少元才能使每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線x、y軸分別交于點A、C.拋物線的圖象經(jīng)過A、C和點B1,0).

1)求拋物線的解析式;

2)在直線AC上方的拋物線上有一動點D,當D與直線AC的距離DE最大時,求出點D的坐標,并求出最大距離是多少?

查看答案和解析>>

同步練習冊答案