【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BDDF,連接CF、BE.
(1)求證:DBDE;
(2)求證:直線CF為⊙O的切線;
(3)若CF4,求圖中陰影部分的面積.
【答案】(1)(2)見解析;(3)
【解析】分析:(1)欲證明DB=DE.,只要證明∠DBE=∠DEB;
(2)欲證明CF是⊙O的切線.,只要證明BC⊥CF即可;
根據(jù)S陰影部分S扇形S△OBD計算即可.
詳解:(1)證明:∵E是△ABC的內(nèi)心,
∴∠BAE=∠CAE,∠EBA=∠EBC,
∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,
∴∠DBE=∠DEB,
∴DB=DE.
(2)連接CD.
∵DA平分∠BAC,
∴∠DAB=∠DAC,
∴BD=CD,
又∵BD=DF,
∴CD=DB=DF,
∴
∴BC⊥CF,
∴CF是⊙O的切線.
(3)連接OD.
∵O、D是BC、BF的中點,CF4, ∴OD2.
∵CF是⊙O的切線,
∴
∴△BOD為等腰直角三角形.
∴S陰影部分S扇形S△OBD .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車分別在相距180千米的A、B兩地相向而行,甲車每小時比乙車每小時快20千米,甲車在乙車出發(fā)2小時后出發(fā),甲車出發(fā)1小時兩車相遇。
(1)求甲、乙兩車的速度各是多少?
(2)甲、乙兩車各自到達目的地后都立即返回,問甲車從A地出發(fā)多長時間甲、乙兩車 相距20千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點.
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關(guān)系?試說明理由;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負。一天中七次行駛記錄如下。(單位: )
,,,,,,
(1)求收工時距地多遠?在地的什么方向?
(2)在第幾次記錄時離地最遠,并求出最遠距離。
(3)若每千米耗油升。問共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省嘉興市,第20題,8分)如圖,一次函數(shù)()與反比例函數(shù)()的圖象交于點A(﹣1,2),B(m,﹣1).
(1)求這兩個函數(shù)的表達式;
(2)在x軸上是否存在點P(n,0)(n>0),使△ABP為等腰三角形?若存在,求n的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,為正方形的邊上一點,將正方形沿折疊,點落在點處,連接并延長,交于點,求證:;
(2)如圖2,點分別在邊上,且,求證:
(3)如圖3,點分別在邊上,點分別在邊上,交于點,已知,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某客運站行車時刻表如圖,若全程保持勻速行駛,則當(dāng)快車出發(fā)______小時后,兩車相距25km.
哈爾濱—長春 | 出發(fā)時間 | 到站時間 | 里程(km) |
普通車 | 7:00 | 11:00 | 300 |
快車 | 7:30 | 10:30 | 300 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】莊子說:“一尺之椎,日取其半,萬世不竭”.這句話(文字語言)表達了古人將事物無限分割的思想,用圖形語言表示為圖1,按此圖分割的方法,可得到一個等式(符號語言): .圖2也是一種無限分割:在中, , ,過點作于點,再過點作于點,又過點作于點,如此無限繼續(xù)下去,則可將分割成、、、、…、、….假設(shè),這些三角形的面積和可以得到一個等式是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DE是AB的垂直平分線,交BC于點D,交AB于點E,已知AE=1 cm,△ACD的周長為12 cm,則△ABC的周長是( )
A. 13 cm B. 14 cm C. 15 cm D. 16 cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com