【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點 M,N;②作直線 MN 交 AB 于點 D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為
A.90°B.95°C.105°D.110°
【答案】C
【解析】
根據(jù)等腰三角形的性質(zhì)得到∠CDA=∠A=50°,根據(jù)三角形內(nèi)角和定理可得∠DCA=80°,根據(jù)題目中作圖步驟可知,MN垂直平分線段BC,根據(jù)線段垂直平分線定理可知BD=CD,根據(jù)等邊對等角得到∠B=∠BCD,根據(jù)三角形外角性質(zhì)可知∠B+∠BCD=∠CDA,進而求得∠BCD=25°,根據(jù)圖形可知∠ACB=∠ACD+∠BCD,即可解決問題.
∵CD=AC,∠A=50°
∴∠CDA=∠A=50°
∵∠CDA+∠A+∠DCA=180°
∴∠DCA=80°
根據(jù)作圖步驟可知,MN垂直平分線段BC
∴BD=CD
∴∠B=∠BCD
∵∠B+∠BCD=∠CDA
∴2∠BCD=50°
∴∠BCD=25°
∴∠ACB=∠ACD+∠BCD=80°+25°=105°
故選C
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)(a>0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標(biāo)分別為﹣1和3,則下列結(jié)論正確的是( )
A. 2a﹣b=0
B. a+b+c>0
C. 3a﹣c=0
D. 當(dāng)a=時,△ABD是等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點 E.
(1)求證:DE=CE.
(2)若∠CDE=35°,求∠A 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC交AB于M,交AC于N,若△ABC 、△AMN周長分別為13cm和8cm.
(1)求證:△MBE為等腰三角形;
(2)線段BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點D、點E分別在邊AB、BC上,DE=AE,且∠B=∠C=∠DEA=β。
(1)求證:△BDE≌△CEA
(2)當(dāng)∠DEB=β 時,
①求 β 的值;
②若將△AEC繞點E順時針旋轉(zhuǎn),使得∠DEA =90°,如圖2所示,其余條件不變,連結(jié)AB交CE的延長線于F,求證:CF=CA .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解方程x2﹣x+1=0的時候,奇奇的方法別出心裁:
解:移項得:x2+1=x,變形得:x2+1=x=(+)x①,由于原方程中x≠0,故可以在①的兩邊同時除以x得:x+=+解得:x1=,x2=
這是利用對稱式的典型范例,下面的問題需要你來完成:
(1)直接寫出方程x﹣=b﹣的解:
(2)由(1)的結(jié)論解關(guān)于x的方程:x﹣=a﹣(a≠2)
(3)模仿奇奇的解法,解方程:x2﹣x+4=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為5的正方形ABCD中,以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形的個數(shù)為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,延長BP至點D,使得AD=AP,當(dāng)AD⊥AB時,過點D作DE⊥AC于E.
(1)求證:∠CBP=∠ABP;
(2)若AB-BC=4,AC=8.求AB的長度和DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)學(xué)校組織學(xué)生參加綜合實踐活動,他們參與了某種品牌運動鞋的銷售工作,已知該運動鞋每雙的進價為120元,為尋求合適的銷售價格進行了4天的試銷,試銷情況如下表所示:
第1天 | 第2天 | 第3天 | 第4天 | |
售價x(元/雙) | 150 | 200 | 250 | 300 |
銷售量y(雙) | 40 | 30 | 24 | 20 |
(1)觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關(guān)系?請求出這個函數(shù)關(guān)系式;
(2)若商場計劃每天的銷售利潤為3000元,則其單價定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com