【題目】如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點(diǎn),與雙曲線y= (x>0)相交于點(diǎn)P,PC⊥x軸于點(diǎn)C,且PC=2,點(diǎn)A的坐標(biāo)為(﹣2,0).
(1)求雙曲線的解析式;
(2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),且QH⊥x軸于H,當(dāng)以點(diǎn)Q、C、H為頂點(diǎn)的三角形與△AOB相似時(shí),求點(diǎn)Q的坐標(biāo).
【答案】
(1)
解:(1)把A(﹣2,0)代入y=ax+1中,求得a= ,
∴y= x+1,
由PC=2,把y=2代入y= x+1中,得x=2,即P(2,2),
把P代入y= 得:k=4,
則雙曲線解析式為y= ;
(2)
解:
設(shè)Q(a,b),
∵Q(a,b)在y= 上,
∴b= ,
當(dāng)△QCH∽△BAO時(shí),可得 ,即 ,
∴a﹣2=2b,即a﹣2= ,
解得:a=4或a=﹣2(舍去),
∴Q(4,1);
當(dāng)△QCH∽△ABO時(shí),可得 ,即 = ,
整理得:2a﹣4= ,
解得:a=1+ 或a=1﹣ (舍),
∴Q(1+ ,2 ﹣2).
綜上,Q(4,1)或Q(1+ ,2 ﹣2).
【解析】(1)把A坐標(biāo)代入直線解析式求出a的值,確定出直線解析式,把y=2代入直線解析式求出x的值,確定出P坐標(biāo),代入反比例解析式求出k的值,即可確定出雙曲線解析式;(2)設(shè)Q(a,b),代入反比例解析式得到b= ,分兩種情況考慮:當(dāng)△QCH∽△BAO時(shí);當(dāng)△QCH∽△ABO時(shí),由相似得比例求出a的值,進(jìn)而確定出b的值,即可得出Q坐標(biāo).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小;一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長的最小值是5cm,則∠AOB的度數(shù)是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰△OBC的邊OB在x軸上,OB=CB,OB邊上的高CA與OC邊上的高BE相交于點(diǎn)D,連接OD,AB=,∠CBO=45°,在直線BE上求點(diǎn)M,使△BMC與△ODC相似,則點(diǎn)M的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,兩條對(duì)角線AC,BD相交于點(diǎn)O,∠MON+∠BCD=180°,∠MON繞點(diǎn)O旋轉(zhuǎn),射線OM交邊BC于點(diǎn)E,射線ON交邊DC于點(diǎn)F,連接EF.
(1)如圖1,當(dāng)∠ABC=90°時(shí),△OEF的形狀是;
(2)如圖2,當(dāng)∠ABC=60°時(shí),請(qǐng)判斷△OEF的形狀,并說明理由;
(3)在(1)的條件下,將∠MON的頂點(diǎn)移到AO的中點(diǎn)O′處,∠MO′N繞點(diǎn)O′旋轉(zhuǎn),仍滿足∠MO′N+∠BCD=180°,射線O′M交直線BC于點(diǎn)E,射線O′N交直線CD于點(diǎn)F,當(dāng)BC=4,且=時(shí),直接寫出線段CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC,D是邊BC的中點(diǎn),過D作DE∥AB于E,連接BE交AD于D1;過D1作D1E1∥AB于E1 , 連接BE1交AD于D2;過D2作D2E2∥AB于E2 , …,如此繼續(xù),若記S△BDE為S1 , 記 為S2 , 記 為S3…,若S△ABC面積為Scm,則Sn=cm(用含n與S的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)的圖象上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為(6,2),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則第4個(gè)正方形的邊長是 , S3的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開學(xué)初,小明到文具批發(fā)部一次性購買某種筆記本,該文具批發(fā)部規(guī)定:這種筆記本售價(jià)y(元/本)與購買數(shù)量x(本)之間的函數(shù)關(guān)系如圖所示.
(1)圖中線段AB所表示的實(shí)際意義是;
(2)請(qǐng)直接寫出y與x之間的函數(shù)關(guān)系式;
(3)已知該文具批發(fā)部這種筆記本的進(jìn)價(jià)是3元/本,若小明購買此種筆記本超過10本但不超過20本,那么小明購買多少本時(shí),該文具批發(fā)部在這次買賣中所獲的利潤W(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了“讀好書,助成長”系列活動(dòng),并準(zhǔn)備購置一批圖書,購書前,對(duì)學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,根據(jù)統(tǒng)計(jì)圖所提供的信息,回答下列問題:
(1)本次調(diào)查共抽查了名學(xué)生,兩幅統(tǒng)計(jì)圖中的m= , n= .
(2)已知該校共有960名學(xué)生,請(qǐng)估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校要舉辦讀書知識(shí)競賽,七年(1)班要在班級(jí)優(yōu)勝者2男1女中隨機(jī)選送2人參賽,求選送的兩名參賽同學(xué)為1男1女的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|,a∈R. (I)當(dāng)a=3時(shí),求關(guān)于x的不等式f(x)≤6的解集;
(II)當(dāng)x∈R時(shí),f(x)≥a2﹣a﹣13,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com