【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;
(2)平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的△A2B2C2 ;
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo) .
【答案】(1)圖略
(2)旋轉(zhuǎn)中心為(1.5,-1)
(3)P(-2,0)
【解析】(1)延長AC到A1,使得AC=A1C,延長BC到B1,使得BC=B1C,利用點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),得出圖象平移單位,即可得出△A2B2C2;
(2)根據(jù)△△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2進(jìn)而得出,旋轉(zhuǎn)中心即可;
(3)根據(jù)B點(diǎn)關(guān)于x軸對(duì)稱點(diǎn)為A2,連接AA2,交x軸于點(diǎn)P,再利用相似三角形的性質(zhì)求出P點(diǎn)坐標(biāo)即可.
解:(1)△A1B1C如圖所示,
△A2B2C2如圖所示;
(2)如圖,旋轉(zhuǎn)中心坐標(biāo)為(1.5,3);
(3)如圖所示,點(diǎn)P的坐標(biāo)為(﹣2,0).
“點(diǎn)睛”此題主要考查了圖形的平移與旋轉(zhuǎn)和相似三角形的性質(zhì)等知識(shí),利用軸對(duì)稱求最小值問題是考試重點(diǎn),同學(xué)們應(yīng)重點(diǎn)掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小莉在跑道上進(jìn)行100 m短跑比賽,兩人從出發(fā)點(diǎn)同時(shí)起跑,小明到達(dá)終點(diǎn)時(shí),小莉離終點(diǎn)還差6 m,已知小明和小莉的平均速度分別為x m/s、y m/s.
(1)如果兩人重新開始比賽,小明從起點(diǎn)向后退6 m,兩人同時(shí)起跑能否同時(shí)到達(dá)終點(diǎn)?若能,請(qǐng)求出兩人到達(dá)終點(diǎn)的時(shí)間;若不能,請(qǐng)說明誰先到達(dá)終點(diǎn).
(2)如果兩人想同時(shí)到達(dá)終點(diǎn),應(yīng)如何安排兩人起跑位置?請(qǐng)?jiān)O(shè)計(jì)兩種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AO為Rt△ABC的角平分線,∠ACB=90°,,以O為圓心,OC 為半徑的圓分別交AO,BC于點(diǎn)D,E,連接ED并延長交AC于點(diǎn)F.
(1)求證:AB是⊙O的切線;
(2)求的值。
(3)若⊙O的半徑為4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司到果品基地購買某種優(yōu)質(zhì)水果慰問醫(yī)務(wù)工作者,果品基地對(duì)購買量在3000kg以上(含3000kg)的顧客采用兩種銷售方案.甲方案:每千克9元,由基地送貨上門;乙方案:每千克8元,由顧客自己租車運(yùn)回.已知該公司租車從基地到公司的運(yùn)輸費(fèi)用為5000元.
(1)分別寫出該公司兩種購買方案付款金額y(元)與所購買的水果量x(kg)之間的函數(shù)關(guān)系式.
(2)當(dāng)購買量在哪一范圍時(shí),選擇哪種購買方案付款最少?并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的兩個(gè)實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請(qǐng)你說明理由;
(2)求使(x1+1)(x2+1)為正整數(shù)的實(shí)數(shù)a的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b(k、b是常數(shù))當(dāng)自變量x的取值為1≤x≤5時(shí),對(duì)應(yīng)的函數(shù)值的范圍為﹣2≤y≤2,則此一次函數(shù)的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①BE=DF;②∠AEB=75°;③CE=2;④S正方形ABCD=2+,其中正確答案是( 。
A.①②B.②③C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).
設(shè)這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)﹣2<x<2時(shí),下列函數(shù)中,函數(shù)值y隨自變量x增大而增大的有( 。﹤(gè).
①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com