【題目】如圖,△ABC 是等邊三角形,D AC 上一點(diǎn)連接 BD,旋轉(zhuǎn)△BCD,使點(diǎn) B 落在 BC上方的點(diǎn) E 處,點(diǎn) C 落在 BC 上的點(diǎn) F 處,點(diǎn) D 落在點(diǎn) C 處,連接 AE

求證:四邊形 ABFE 是平行四邊形.

【答案】詳見(jiàn)解析.

【解析】

由題意ABC、AED、DCF是等邊三角形,可以推知同位角CFD=ABC,內(nèi)錯(cuò)角CFD=AED.所以利用平行的線的判定定理可以證得四邊形ABFE的對(duì)邊相互平行.

證明:∵△ABC 是等邊三角形,

ACBCAB,ACB60°

AC 繞點(diǎn) E 旋轉(zhuǎn)

DFDC,DEDA

∴△DFC 是等邊三角形,

DFCDCF,DCFEFC60°,

EFACBC,

∴△ABC、△AED、△DCF 均為等邊三角形,

∴∠CFDABCDEA60°,

ABEF,BFAE

四邊形 ABFE 是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;

(2)求建筑物CD的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一組數(shù)據(jù)ab,c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a+2b+2,c+2的平均數(shù)和方差分別是(  )

A.54B.4,5C.7,4D.7,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形OABC在平面直角坐標(biāo)系的位置如圖所示,頂點(diǎn)A(5,0),OB=4,點(diǎn)P是對(duì)角線OB上的一個(gè)動(dòng)點(diǎn),D(0,1),當(dāng)CP+DP最短時(shí),點(diǎn)P的坐標(biāo)為( 。

A. (0,0) B. (1, C. , D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

1)如圖1,在RtABC中,ABC=90°,以點(diǎn)B為中心,把ABC逆時(shí)針旋轉(zhuǎn)90°,得到A1BC1;再以點(diǎn)C為中心,把ABC順時(shí)針旋轉(zhuǎn)90°,得到A2B1C,連接C1B1,則C1B1BC的位置關(guān)系為_______;

2)如圖2,當(dāng)ABC是銳角三角形,ABC=αα≠60°)時(shí),將ABC按照(1)中的方式旋轉(zhuǎn)α,連接C1B1,探究C1B1BC的位置關(guān)系,寫(xiě)出你的探究結(jié)論,并加以證明;

3)如圖3,在圖2的基礎(chǔ)上,連接B1B,若C1B1=BCC1BB1的面積為4,則B1BC的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,CD平分∠ACBAB于點(diǎn)D,按下列步驟作圖:

步驟1:分別以點(diǎn)C和點(diǎn)D為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于M,N兩點(diǎn);

步驟2:作直線MN,分別交AC,BC于點(diǎn)E,F(xiàn);

步驟3:連接DE,DF.

AC=4,BC=2,則線段DE的長(zhǎng)為  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD 中,點(diǎn)EAD上,ECAB,EBDC,若ABE面積為5,ECD的面積為1,則BCE的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人民生活水平的不斷提高,我市家庭轎車(chē)的擁有量逐年增加.據(jù)統(tǒng)計(jì),某小區(qū)2015年底擁有家庭轎車(chē)64輛,2017年底家庭轎車(chē)的擁有量達(dá)到100輛.

(1)若該小區(qū)2015年底到2018年底家庭轎車(chē)擁有量的年平均增長(zhǎng)率都相同,求該小區(qū)到2018年底家庭轎車(chē)將達(dá)到多少輛?

(2)為了緩解停車(chē)矛盾,該小區(qū)決定投資15萬(wàn)元再建造若干個(gè)停車(chē)位.據(jù)測(cè)算,建造費(fèi)用分別為室內(nèi)車(chē)位5000元/個(gè),露天車(chē)位1000元/個(gè),考慮到實(shí)際因素,計(jì)劃露天車(chē)位的數(shù)量不少于室內(nèi)車(chē)位的2倍,但不超過(guò)室內(nèi)車(chē)位的2.5倍,求該小區(qū)最多可建兩種車(chē)位各多少個(gè)?試寫(xiě)出所有可能的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=6,BC=4,若ACAD,且∠ACD=60°,則對(duì)角線BD的長(zhǎng)的最大值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案