已知直線y=-x+4交x軸的正半軸于點A,交y軸于點B,拋物線y=ax2+bx+c經(jīng)過A精英家教網(wǎng)、B,且拋物線上有不同的兩點E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求A,B兩點的坐標,并求拋物線的解析式;
(2)設點P(x,y)(x>0)是直線y=x上的一點,Q是OP的中點(O是原點)以PQ為對角線作正方形PEQF,若正方形與PEQF與直線AB有公共點,求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關于x的函數(shù)解析式,并探究S的最大值.
分析:(1)由直線y=-x+4交x軸的正半軸于點A,交y軸于點B,即可求得A,B的坐標,又由拋物線上有不同的兩點E(k+3,-k2+1)和F(-k-1,-k2+1)的縱坐標相等,即可求得此拋物線的對稱軸,利用待定系數(shù)法即可求得解析式;
(2)分別從當點P(x,x)在直線AB上時與當點Q(
x
2
,
x
2
)在直線AB上時分析,即可求得x的取值范圍;
(3)首先求得當點E(x,
x
2
)在直線AB上時x的值,再分別從當2≤x<
8
3
時與當
8
3
≤x≤4時去分析,注意三角形的面積求解方法與二次函數(shù)最大值的求解方法的應用.
解答:解:(1)當x=0時,y=4,即B(0,4),
當y=0時,x=4,即A(4,0),
∵拋物線上有不同的兩點E(k+3,-k2+1)和F(-k-1,-k2+1)的縱坐標相等,
∴點E和點F關于拋物線對稱軸對稱,
∴對稱軸x=-
b
2a
=
(k+3)+(-k-1)
2
=1,
把點A,點B代入拋物線解析式中求得a=-
1
2
,b=1,c=4,
∴拋物線解析式為y=-
1
2
x2+x+4;

(2)當點P(x,x)在直線AB上時,x=-x+4,
解得x=2,
當點Q(
x
2
,
x
2
)在直線AB上時,
x
2
=-
x
2
+4,
解得x=4.
所以,若正方形PEQF與直線AB有公共點,則2≤x≤4.

精英家教網(wǎng)(3)當點E(x,
x
2
)在直線AB上時,(此時點F也在直線AB上)
x
2
=-x+4,
解得x=
8
3

①當2≤x<
8
3
時,直線AB分別與PE、PF有交點,設交點分別為C、D,
此時,PC=x-(-x+4)=2x-4,
又PD=PC,
所以S△PCD=
1
2
PC2=2(x-2)2
從而:S=
1
4
x2-2(x-2)2=-
7
4
x2+8x-8=-
7
4
(x-
16
7
2+
8
7

∵2≤
16
7
8
3
,
∴當x=
16
7
時,Smax=
8
7

精英家教網(wǎng)②當
8
3
≤x≤4時,直線AB分別與QE、QF有交點,設交點分別為M、N,
此時,QN=(-
x
2
+4)-
x
2
=-x+4,
又QM=QN,
∴S△QMN=
1
2
QN2=
1
2
(x-4)2,
即S=
1
2
(x-4)2
其中當x=
8
3
時,Smax=
8
9

綜合①②得,當x=
16
7
時,Smax=
8
7
點評:此題考查了待定系數(shù)法求二次函數(shù)的解析式,函數(shù)自變量的取值范圍的確定、二次函數(shù)最大值的確定以及三角形面積的求解等知識.此題綜合性很強,注意數(shù)形結合思想與分類討論思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知直線y=2x經(jīng)過點P(1,a),且點P在反比例函數(shù)y=
kx
的圖象上.求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•黔南州)如圖,已知直線l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•株洲模擬)如圖,已知直線AB是⊙O的切線,A為切點,OB交⊙O于點C,點D在⊙O上,且∠OBA=40°,則∠ADC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)尺規(guī)作圖:如圖,已知直線l及其兩側(cè)兩點A、B,在直線l上求一點P,使l平分∠APB.
(2)在5×5的方格圖中畫一個腰長為5的等腰三角形,使它的三個頂點都在格點上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線AB∥CD,直線EF截AB、CD于E、F,EG⊥CD,∠EFD=45°且FG=8,則AB、CD之間的距離為
8
8

查看答案和解析>>

同步練習冊答案