【題目】已知:ABC是邊長(zhǎng)為3的等邊三角形,BC為底邊作一個(gè)頂角為120等腰BDC.點(diǎn)M、點(diǎn)N分別是AB邊與AC邊上的點(diǎn),并且滿足∠MDN=60

1)如圖1,當(dāng)點(diǎn)DABC外部時(shí),求證:BM+CN=MN

2)當(dāng)點(diǎn)DABC內(nèi)部時(shí),其它條件不變,請(qǐng)?jiān)趫D2中補(bǔ)全圖形,并直接寫出AMN的周長(zhǎng).

【答案】1)證明見(jiàn)解析;(23

【解析】

1)延長(zhǎng)ABF,使BF=CN,連接DF,證明BDFCDN,DMNDMF即可得到結(jié)論;

2)延長(zhǎng)BDACP,延長(zhǎng)CDABQ,截取KP=QM,連接DK.通過(guò)證明BDQCDP,MDQKDP,MDNKDN可得AMN的周長(zhǎng)=AQ+AP=3

1)延長(zhǎng)ABF,使BF=CN,連接DF

BDC是等腰三角形,且∠BDC=120°,∴∠BCD=DBC=30°

ABC是邊長(zhǎng)為3的等邊三角形,∴∠ABC=BAC=BCA=60°,∴∠DBA=DCA=90°,∴∠DBF=DBA=DCA=90°

BDFCND中,∵BF=CN,∠DBF=DCN,DB=DC,∴BDFCDN,∴∠BDF=CDN,DF=DN

∵∠MDN=60°,∴∠BDM+CDN=60°,∴∠BDM+BDF=60°,∠FDM=60°=MDN,DM為公共邊,∴DMNDMF,∴MN=MF

MF=BM+BF=MB+CN,∴MN=BM+CN

2)延長(zhǎng)BDACP,延長(zhǎng)CDABQ,截取KP=QM,連接DK

BDC是等腰三角形,且∠BDC=120°,∴BD=CD,∠DBC=DCB=30°,∠BDQ=CDP=60°

又∵ABC等邊三角形,∴∠ABC=ACB=60°,∴∠MBD=PCD=30°,CQAB,BPAC,∴AQ=BQAB,AP=PCAC

BDQCDP中,∵,∴BDQCDPASA),∴BQ=PC,QD=PD

CQAB,BPAC,∴∠MQD=DPK=90°

MDQKDP中,

,

MDQKDPSAS),

∴∠QDM=PDK,DM=DK

∵∠BDQ=60°,∠MDN=60°,∴∠QDM+PDN=60°,

∴∠PDK+PDN=60°,即∠KDN=60°

MDNKDN中,∵,∴MDNKDNSAS),

MN=KN=NP+PK,

AMN的周長(zhǎng)=AM+AN+MN=AM+AN+NP+PK=AM+AN+NP+QM=AQ+AP3

AMN的周長(zhǎng)為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:邊長(zhǎng)為2的正方形OABC在平面直角坐標(biāo)系中位于x軸上方,OAx軸的正半軸的夾角為60°,則B點(diǎn)的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MON=30°,點(diǎn)A1A2、A3…在射線ON上,點(diǎn)B1B2、B3…在射線OM上,A1B1A2、A2B2A3A3B3A4…均為等邊三角形,從左起第1個(gè)等邊三角形的邊長(zhǎng)記為a1,第2個(gè)等邊三角形的邊長(zhǎng)記為a2,以此類推.若OA1=1,則a2017= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,ACB=∠ECD=90°,DAB邊上一點(diǎn).

求證:(1)△ACE≌△BCD;(2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本的作業(yè)題中有這樣一道題:把一張頂角為36°的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,你能辦到嗎?請(qǐng)畫示意圖說(shuō)明剪法.

我們有多少種剪法,圖1是其中的一種方法:

定義:如果兩條線段將一個(gè)三角形分成3個(gè)等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.

1)請(qǐng)你在圖2中用兩種不同的方法畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù);(若兩種方法分得的三角形成3對(duì)全等三角形,則視為同一種)

2ABC中,∠B=30°,ADDEABC的三分線,點(diǎn)DBC邊上,點(diǎn)EAC邊上,且AD=BDDE=CE,設(shè)∠C=x°,試畫出示意圖,并求出x所有可能的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行以助人為樂(lè),樂(lè)在其中為主題的演講比賽,比賽設(shè)一個(gè)第一名,一個(gè)第二名,兩個(gè)并列第三名.前四名中七、八年級(jí)各有一名同學(xué),九年級(jí)有兩名同學(xué),小蒙同學(xué)認(rèn)為前兩名是九年級(jí)同學(xué)的概率是,你贊成他的觀點(diǎn)嗎?請(qǐng)用列表法或畫樹(shù)形圖法分析說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC的內(nèi)切圓⊙O與兩直角邊ABBC分別相切于點(diǎn)D,E,過(guò)劣弧DE(不包括端點(diǎn)D,E)上任一點(diǎn)P作⊙O的切線MN,與AB,BC分別交于點(diǎn)M,N,若⊙O的半徑為r,則RtMBN的周長(zhǎng)為(  )

A. r B. r C. 2r D. r

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD⊙O的弦,AB經(jīng)過(guò)圓心O,交⊙O于點(diǎn)C∠DAB=∠B=30°

1)直線BD是否與⊙O相切?為什么?

2)連接CD,若CD=5,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是菱形ABCD對(duì)角線AC上的一點(diǎn),連接DP并延長(zhǎng)DP交邊AB于點(diǎn)E,連接BP并延長(zhǎng)BP交邊AD于點(diǎn)F,交CD的延長(zhǎng)線于點(diǎn)G.

(1)求證:APB≌△APD;

(2)已知DF:FA=1:2,設(shè)線段DP的長(zhǎng)為x,線段PF的長(zhǎng)為y.

求y與x的函數(shù)關(guān)系式;

當(dāng)x=6時(shí),求線段FG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案