(2006•福州)關(guān)x的一元二次方程(x-2)(x-3)=m有兩個(gè)實(shí)數(shù)根x1、x2,
(1)求m的取值范圍;
(2)若x1、x2滿足等式x1x2-x1-x2+1=0,求m的值.
【答案】分析:(1)方程有實(shí)數(shù)根,則根的判別式大于或等于0,求出m的取值范圍.
(2)根據(jù)根與系數(shù)的關(guān)系即可求得x1+x2=5,x1•x2=6-m,代入等式x1x2-x1-x2+1=0,即可得到關(guān)于m的方程,求出m的值.
解答:解:(1)先化簡(jiǎn)方程(x-2)(x-3)=m為x2-5x+6-m=0,
∴a=1,b=-5,c=6-m,
∴△=b2-4ac=(-5)2-4×1×(6-m)=1+4m≥0,
∴m≥-
(2)∵x1+x2=5,x1•x2=6-m,
∴x1x2-x1-x2+1=x1x2-(x1+x2)+1=6-m-5+1=0
∴m=2.
點(diǎn)評(píng):總結(jié):(1)一元二次方程根的情況與判別式△的關(guān)系:
①△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;
②△=0?方程有兩個(gè)相等的實(shí)數(shù)根;
③△<0?方程沒(méi)有實(shí)數(shù)根.
(2)一元二次方程的根與系數(shù)的關(guān)系為:x1+x2=,x1•x2=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年福建省福州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•福州)關(guān)x的一元二次方程(x-2)(x-3)=m有兩個(gè)實(shí)數(shù)根x1、x2,
(1)求m的取值范圍;
(2)若x1、x2滿足等式x1x2-x1-x2+1=0,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案