【題目】如圖,正方形的邊長為4,點(diǎn)是正方形外一動(dòng)點(diǎn),,為的中點(diǎn),當(dāng)運(yùn)動(dòng)時(shí),線段的最大值為( 。
A. B. C. D.
【答案】D
【解析】分析:連接AC,BD交于點(diǎn)O,連接PO,EO,根據(jù)A,C,E,D四點(diǎn)共圓,可得OE=OD=BD=2,再根據(jù)PE≤OP+OE=2+2,可得當(dāng)點(diǎn)O在線段PE上時(shí),PE=OP+OE=2+2,即線段PE的最大值為2+2.
詳解:如圖,連接AC,BD交于點(diǎn)O,連接PO,EO,
∵∠AED=45°,∠ACD=45°,
∴A,C,E,D四點(diǎn)共圓,
∵正方形ABCD的邊長為4,
∴OE=OD=BD=2,
∵P為AB的中點(diǎn),O是BD的中點(diǎn),
∴OP=AD=2,
∵PEOP+OE=2+2,
∴當(dāng)點(diǎn)O在線段PE上時(shí),PE=OP+OE=2+2,
即線段PE的最大值為2+2,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形中,對(duì)角線相交于點(diǎn),,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以的速度向點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以的速度向點(diǎn)運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止.設(shè)運(yùn)動(dòng)時(shí)間為,以點(diǎn)為圓心,為半徑的⊙與射線,線段分別交于點(diǎn),連接.
(1)求的長(用含有的代數(shù)式表示),并求出的取值范圍;
(2)當(dāng)為何值時(shí),線段與⊙相切?
(3)若⊙與線段只有一個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.
(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;
(2)如圖2,若點(diǎn)O在正方形的中心(即兩對(duì)角線的交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請說明理由;
(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請?zhí)骄奎c(diǎn)O在移動(dòng)過程中可形成什么圖形?
(4)如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請你就“點(diǎn)O的位置在各種情況下(含外部)移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)請根據(jù)下列計(jì)算,把解題過程補(bǔ)充完整,并把解題過程中用到的運(yùn)算律寫在題后的橫線上:
①
解:原式
.
運(yùn)算律: .
②.
解:原式
)(
運(yùn)算律: .
(2)計(jì)算下列各題:
①
②
③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.
(1)如圖①,點(diǎn)A是FG的中點(diǎn),FG∥BC,將矩形DEFG向下平移,直到DE與BC重合為止.要研究矩形DEFG與△ABC重疊部分的面積,就要進(jìn)行分類討論,你認(rèn)為如何進(jìn)行分類,寫出你的分類方法(無需求重疊部分的面積).
(2)如圖②,點(diǎn)B與F重合,E、B、C在同一直線上,將矩形DEFG向右平移,直到點(diǎn)E與C重合為止.設(shè)矩形DEFG與△ABC重疊部分的面積為y,平移的距離為x.
① 求y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
② 在給定的平面直角坐標(biāo)系中畫出y與x的大致圖象,并在圖象上標(biāo)注出關(guān)鍵點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=﹣x2+bx+C經(jīng)過點(diǎn)B(0,3)和點(diǎn)A(3,0)
(1)求該拋物線的函數(shù)表達(dá)式和直線AB的函數(shù)表達(dá)式;
(2)若直線l⊥x軸,在第一象限內(nèi)與拋物線交于點(diǎn)M,與直線AB交于點(diǎn)N,請?jiān)趥溆脠D上畫出符合題意的圖形,并求點(diǎn)M與點(diǎn)N之間的距離的最大值或最小值,以及此時(shí)點(diǎn)M,N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為、,點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC邊上運(yùn)動(dòng),當(dāng)是等腰三角形時(shí),點(diǎn)Р的坐標(biāo)為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,點(diǎn)把線段分割成,若以為邊的三角形是一個(gè)直角三角形,則稱是線段的勾股點(diǎn)。
(1)已知點(diǎn)是線段的勾股點(diǎn),若,求的長。
(圖1) (圖2) (圖3)
(2)如圖2,點(diǎn)是反比例函數(shù)上的動(dòng)點(diǎn),直線與坐標(biāo)軸分別交與兩點(diǎn),過點(diǎn)分別向軸作垂線,垂足為,且交線段于。試證明:是線段的勾股點(diǎn)。
(3)如圖3,已知一次函數(shù)與坐標(biāo)軸交與兩點(diǎn),與二次函數(shù)交與兩點(diǎn),若是線段的勾股點(diǎn),求的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com