【題目】如圖,在△ABC中,∠A=60°,BD,CD分別平分∠ABC,∠ACB,M,N,Q分別在DB,DC,BC的延長線上,BE,CE分別平分∠MBC,∠BCN,BF,CF分別平分∠EBC,∠ECQ,則∠F=

【答案】15°
【解析】解:∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,
∴∠DBC= ∠ABC,∠DCB= ∠ACB,
∴∠DBC+∠DCB= (∠ABC+∠ACB)= (180°﹣∠A)= ×(180°﹣60°)=60°,
∴∠MBC+∠NCB=360°﹣60°=300°,
∵BE、CE分別平分∠MBC、∠BCN,
∴∠5+∠6= ∠MBC,∠1= ∠NCB,
∴∠5+∠6+∠1= (∠NCB+∠NCB)=150°,
∴∠E=180°﹣(∠5+∠6+∠1)=180°﹣150°=30°,
∵BF、CF分別平分∠EBC、∠ECQ,
∴∠5=∠6,∠2=∠3+∠4,
∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,
即∠2=∠5+∠F,2∠2=2∠5+∠E,
∴2∠F=∠E,
∴∠F= ∠E= ×30°=15°.
故答案為15°.

先由BD、CD分別平分∠ABC、∠ACB得到∠DBC= ∠ABC,∠DCB= ∠ACB,在△ABC中根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB= (∠ABC+∠ACB)= (180°﹣∠A)=60°,則根據(jù)平角定理得到∠MBC+∠NCB=300°;再由BE、CE分別平分∠MBC、∠BCN得∠5+∠6= ∠MBC,∠1= ∠NCB,兩式相加得到∠5+∠6+∠1= (∠NCB+∠NCB)=150°,在△BCE中,根據(jù)三角形內(nèi)角和定理可計(jì)算出∠E=30°;再由BF、CF分別平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根據(jù)三角形外角性質(zhì)得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代換得到∠2=∠5+∠F,2∠2=2∠5+∠E,再進(jìn)行等量代換可得到∠F= ∠E.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣(x12+2的頂點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】買一個(gè)足球需要m元,買一個(gè)籃球需要n元,則買4個(gè)足球、7個(gè)籃球共需( 。

A.28mnB.11mn元 C.(7m+4n)元 D.(4m+7n)元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組在活動(dòng)課上測量學(xué)校旗桿高度.已知小明的眼睛與地面的距離AB=1.7m,看旗桿頂部的仰角為;小紅的眼睛與地面的距離CD=1.5m,看旗桿頂部的仰角為.兩人相距28米且位于旗桿兩側(cè)(點(diǎn)BN、D在同一條直線上).請(qǐng)求出旗桿的高度.(參考數(shù)據(jù): ,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過邊長為1的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長為(

A.
B.
C.
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)為P,與y軸交于點(diǎn)A,與直線OP交于點(diǎn)B.

(1)如圖1,若點(diǎn)P的橫坐標(biāo)為1,點(diǎn), ,試確定拋物線的解析式;

(2)在(1)的條件下,若點(diǎn)M是直線AB下方拋物線上的一點(diǎn),且SABM=3,求點(diǎn)M的坐標(biāo);

(3)如圖2,若P在第一象限,且,過點(diǎn)P軸于點(diǎn)D,將拋物線平移,平移后的拋物線經(jīng)過點(diǎn)A、D,該拋物線與軸的另一個(gè)交點(diǎn)為C,請(qǐng)?zhí)剿魉倪呅?/span>OABC的形狀,并說明理由.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王華、張偉兩位同學(xué)分別將自己10次數(shù)學(xué)自我檢測的成績繪制成如下統(tǒng)計(jì)圖:

1)根據(jù)上圖中提供的數(shù)據(jù)列出如下統(tǒng)計(jì)表:

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差(S2

王華

80

b

80

d

張偉

a

85

c

260

a= ,b= c= ,d=

2)將90分以上(含90分)的成績視為優(yōu)秀,則優(yōu)秀率高的是 .

3)現(xiàn)在要從這兩個(gè)同學(xué)選一位去參加數(shù)學(xué)競賽,你可以根據(jù)以上的數(shù)據(jù)給老師哪些建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,BD為∠ABC的平分線.
(1)如圖1,∠C=2∠DBC,∠A=60°,求證:△ABC為等邊三角形;

(2)如圖2,若∠A=2∠C,BC=8,AB=4.8,求AD的長度;

(3)如圖3,若∠ABC=2∠ACB,∠ACB的平分線OC與BD相交于點(diǎn)O,且OC=AB,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】百貨商場試銷一批新款襯衫,一周內(nèi)銷售情況如表所示,商場經(jīng)理想要了解哪種型號(hào)最暢銷,那么他最關(guān)注的統(tǒng)計(jì)量是(

型號(hào)(厘米)

38

39

40

41

42

43

數(shù)量(件)

23

31

35

48

29

8

A. 平均數(shù) B. 中位數(shù) C. 眾數(shù) D. 方差

查看答案和解析>>

同步練習(xí)冊(cè)答案