【題目】如圖,已知是矩形內(nèi)一點,且,,,那么的長為________

【答案】

【解析】

OEF⊥ADE,交BCF;過OGH⊥DCG,交ABH,設(shè)CF=x,F(xiàn)B=y,AH=s,HB=t,則可得x2-y2=16-9=7,t2-s2=32-12=8,整理得OD2=x2+s2=(y2+t2)-1=9-1=8,即可求得AD的長

如圖,過OEF⊥ADE,交BCF;過OGH⊥DCG,交ABH.

設(shè)CF=x,F(xiàn)B=y,AH=s,HB=t,

∴OG=x,DG=s,

∴OF2=OB2-BF2=OC2-CF2,

42-x2=32-y2,

∴x2-y2=16-9=7①

同理:OH2=12-s2=32-t2

∴t2-s2=32-12=8②

∵OH2+HB2=OB2,y2+t2=9;

①-②得(x2+s2)-(y2+t2)=-1,

∴OD2=x2+s2=(y2+t2)-1=9-1=8,

∴OD=2.

故答案為:2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】蜜蜂是自然界神奇的建筑師,它能用最少的材料造成最牢固的建筑物蜂窩,觀察下列的蜂窩圖

(1)中每條邊看成1個建筑單位,則第1個圖形中共有19個建筑單位,第2個圖案中共有_____個建筑單位;第3個圖案中共有_____個建筑單位.

(2)n個圖案中共有多少個建筑單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個單位長度后得到的ABC;

(2) 請畫出ABC關(guān)于原點對稱的ABC;

(3) 在軸上求作一點P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在正方形ABCD中,M是AB的中點,E是AB的延長線上一點,MNDM,且交CBE的平分線于點N.

(1)求證:MD=MN;

(2)若將上述條件中“M是AB的中點”改成“M是AB上任意一點”,其余條件不變,如圖所示,則結(jié)論MD=MN”還成立嗎?若成立,給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】武漢二中廣雅中學為了了解全校學生的課外閱讀的情況,隨機抽取了部分學生進行閱讀時間調(diào)查,現(xiàn)將學生每學期的閱讀時間m分成A、B、C、D四個等級(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m60;單位:小時),并繪制出了如圖的兩幅不完整的統(tǒng)計圖,根據(jù)以上信息,回答下列問題:

(1)C組的人數(shù)是   人,并補全條形統(tǒng)計圖.

(2)本次調(diào)查的眾數(shù)是   等,中位數(shù)落在   等.

(3)國家規(guī)定:“中小學每學期的課外閱讀時間不低于60小時”,如果該校今年有3500名學生,達到國家規(guī)定的閱讀時間的人數(shù)約有   人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB90°,在∠AOB的平分線OM上有一點C,將一個三角板的直角頂點與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長線)相交于點D,E.

當三角板繞點C旋轉(zhuǎn)到CDOA垂直時(如圖①),易證:ODOEOC;

當三角板繞點C旋轉(zhuǎn)到CDOA不垂直時,即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請給予證明;若不成立,線段ODOE,OC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.

  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. ABBC時,它是菱形 B. ACBD時,它是菱形

C. 當∠ABC90°時,它是矩形 D. ACBD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上有三個點AB、C,完成系列問題:

1A、C兩點間的距離是多少?

2)在數(shù)軸上找到點D,使點DB、C兩點的距離相等;并在數(shù)軸上標出點D表示的數(shù).

3)若點EB點的距離是5,求點E表示的數(shù)是什么?

4)若點FA點的距離是aa>0),直接寫出點F表示的數(shù)是多少?(用字母a表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,O是對角線AC、BD的交點,過點OOEOF,分別交AB、BCE. F.

(1)求證:△OEF是等腰直角三角形。

(2)AE=4,CF=3,求EF的長。

查看答案和解析>>

同步練習冊答案