已知,如圖,⊙D交五軸于A、B,交x軸于C,過點C9直線:五=-2
2
x-8
與五軸交于P,且D9坐標(z,1).
(1)求點C、點P9坐標;
(2)求證:PC是⊙D9切線;
(圖)判斷在直線PC上是否存在點E,使得S△EOP=4S△CDO?若存在,求出點E9坐標;若不存在,請說明理由.
(3)∵直線r=-2
2
x-8
與x軸、r軸分別交于點a、z,
∴當x=0時,r=-8,
當r=0時,x=-2
2
,
∴a( -2
2
,0),z(0,-8);

(2)證明:根據(jù)(3)得Oa=2
2
,Oz=8,OD=3,
∴aot∠OaD=
Oa
OD
=2
2
,aot∠Oza=
Oz
Oa
=2
2
,
∴∠OaD=∠Oza,
∵∠Oza+∠zaO=z0°,
∴∠OaD+∠zaO=z0°,
∴za是⊙D的切線;

(b)設直線za上存在一點E(x,r),
使S△EOz=4S△aDO,即
3
2
×8×|x|=4×
3
2
×3×2
2
,
解得x=±
2
,由r=-2
2
x-8可知:
當x=
2
時,r=-32,
當x=-
2
時,r=-4,
∴在直線za上存在點E(
2
,-32)或(-
2
,-4),
使S△EOz=4S△aDO
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形OABC邊長為2,O是直角坐標系的原點,點A,C分別在x軸,y軸上.點P沿著正方形的邊,按O→A→B的順序運動,設點P經(jīng)過的路程為x,△OPB的面積為y.
(1)求出y與x之間的函數(shù)關系式,寫出自變量x的取值范圍;
(2)探索:當y=
1
4
時,點P的坐標;
(3)是否存在經(jīng)過點(0,-1)的直線平分正方形OABC的面積?如果存在,求出這條直線的解析式;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)y=mx+2m+8與x軸、y軸交于點A、B,若圖象經(jīng)過點C(2,4).
(1)求一次函數(shù)的解析式;
(2)過點C作x軸的平行線,交y軸于點D,在△OAB邊上找一點E,使得△DCE構成等腰三角形,求點E的坐標;
(3)點F是線段OB(不與點O、點B重合)上一動點,在線段OF的右側作正方形OFGH,連接AG、BG,設線段OF=t,△AGB的面積為S,求S與t的函數(shù)關系式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一輛貨車從A地開往B地,一輛轎車從B地開往A地,兩車同時出發(fā),設貨車離A地的距離為y1(km),轎車離A地的距離為y2(km),行駛時間為x(h).y1,y2與x的函數(shù)關系圖象如圖.
解讀信息:
(1)A,B兩地之間的距離為______km;
(2)y1與x的函數(shù)關系式為______,y2與x的函數(shù)關系式為______;
問題解決:
(3)設貨車、轎車之間的距離為s(km),求s與貨車行駛時間x(h)的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,直線y=-
3
4
x+3
交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結論,并證明正確的結論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

今年入夏以來,由于持續(xù)暴雨,我市某縣遭受嚴重洪澇災害,群眾頓失家園.該縣民政局為解決群眾困難,緊急組織1一批救災帳篷和食品準備送到災區(qū).已知這批物資中,帳篷和食品共66多件,且?guī)づ癖仁称范?6多件.
(1)帳篷和食品各有多少件?
(7)現(xiàn)計劃租用A、B兩種貨車共16輛,一次性將這批物資送到群眾手中,已知A種貨車可裝帳蓬6多件和食品1多件,B種貨車可裝帳篷7多件和食品7多件,試通過計算幫助民政局設計幾種運輸方案?
(3)在(7)條件大,A種貨車每輛需付運費8多多元,B種貨車每輛需付運費i7多元,民政局應選擇哪種方案,才能使運輸費用最少?最少費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在購買某場籃球賽門票時,設購買門票張數(shù)為x(張),總費用為y(元).
方案一:若單位贊助廣告費10000元,則該單位所購門票價格為每張60元.(總費用=贊助廣告費+總門票費)
方案二:購買門票的方式如圖所示.
解答下列問題:
(1)請分別求出方案二中當0≤x≤100時和當x>100時,y與x的函數(shù)關系式;
(2)若購買本場籃球賽門票是300張,你將選擇哪一種方案?請說明理由;
(3)若甲、乙兩個單位分別采用方案一、方案二購買本場籃球賽門票共700張,花去總費用共58000元,求甲、乙兩個單位各購買門票多少張?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知:A(8,0),B(0,6),M是AB的中點,點P和點Q分別是x軸和y軸上的兩動點,當△PQM為等腰直角三角形時,則P點的坐標是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果一次函數(shù)y=-x+1的圖象與x軸、y軸分別交于點A點、B點,點M在x軸上,并且使以點A、B、M為頂點的三角形是等腰三角形,那么這樣的點M有(  )
A.3個B.4個C.5個D.7個

查看答案和解析>>

同步練習冊答案