【題目】如圖,△ABC中,AC>AB.
(1)作AB邊的垂直平分線交BC于點(diǎn)P,作AC邊的垂直平分線交BC于點(diǎn)Q,連接AP,AQ.(尺規(guī)作圖,保留作圖痕跡,不需要寫作法)
(2)在(1)的條件下,若BC=14,求△APQ的周長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°、AD是角平分線,E為AC邊上的點(diǎn),DE=DB,下列結(jié)論:①∠DEA+∠B=180°;② ∠CDE=∠CAB;③ AC= (AB+AE);④ S△ADC=S四邊形ABDE,其中正確的結(jié)論個(gè)數(shù)為( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AD=4,E在AB上且AB=4BE,連接CE,作BF⊥CE于F,正方形對(duì)角線交于O點(diǎn),連接OF,將△COF沿CE翻折得△CGF,連接BG,則BG的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以D為頂點(diǎn)的拋物線y=﹣x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線BC的表達(dá)式為y=﹣x+3.
(1)求拋物線的表達(dá)式;
(2)在直線BC上有一點(diǎn)P,使PO+PA的值最小,求點(diǎn)P的坐標(biāo);
(3)在x軸上是否存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形與△BCD相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為 BC上的點(diǎn),F(xiàn)為 CD邊上的點(diǎn),且AE=AF,AB=4,設(shè)EC=x,△AEF 的面積為y,則y與x之間的函數(shù)關(guān)系式是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣出500件,而且定價(jià)每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過批發(fā)價(jià)的2.5倍.
(1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣出________件;
(2)如果商店要實(shí)現(xiàn)每天800元的銷售利潤,那該如何定價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在AB上,在下列四個(gè)條件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=ADAB;④ABCD=ADCB,能滿足△ADC與△ACB相似的條件是( )
A.①、②、③ B.①、③、④ C.②、③、④ D.①、②、④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人參加從A地到B地的長跑比賽,兩人在比賽時(shí)所跑的路程y(米)與時(shí)間x(分鐘)之間的函數(shù)關(guān)系如圖所示,請你根據(jù)圖象,回答下列問題:
(1) 先到達(dá)終點(diǎn)(填“甲”或“乙”);甲的速度是 米/分鐘;
(2)甲與乙何時(shí)相遇?
(3)在甲、乙相遇之前,何時(shí)甲與乙相距250米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點(diǎn)、分別在、軸的正半軸上,點(diǎn)為對(duì)角線的中點(diǎn),反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點(diǎn),且與、分別交于、兩點(diǎn),若四邊形的面積為,則的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com