【題目】矩形ABCD中,AB=6,BC=8,點E是BC邊上一點,連接DE,把△DCE沿DE折疊,使點C落在點C′處,當△BEC′為直角三角形時,BE的長為_____.
【答案】2或5.
【解析】
分情況討論:當∠BC′E=90°時,如圖1;當∠BEC′=90°時,如圖2,分別利用矩形的性質和勾股定理進行計算即可.
解:如圖1,當∠BC′E=90°時,
在矩形ABCD中,AB=6,AD=BC=8,
∴BD=10,
∵把△DCE沿DE折疊,使點C落在點C′處,
∴∠DC′E=∠C=90°,
∵∠BC′E=90°,
∴B,C′,D三點共線,
∴DC′=DC=6,
∴BC′=4,BE=8﹣C′E,
∵BC′2+EC′2=BE2,
∴42+C′E2=(8﹣C′E)2,
解得C′E=3,
∴BE=8﹣3=5;
如圖2,當∠BEC′=90°時,
在矩形ABCD中,AB=CD=6,AD=BC=8,
∵把△DCE沿DE折疊,使點C落在點C′處,
∴∠DC′E=∠C=90°,
∵∠BEC′=90°,
∴∠CEC′=90°,
∵CD=C′D,
∴四邊形ECDC′是正方形,
∴C′E=CE=CD=6,
∴BE=8-6=2.
綜上所述,當△BEC′為直角三角形時,BE的長為2或5,
故答案為:2或5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知以AB為直徑的圓中,∠ACB=∠ABD=90°,∠D=60°,∠ABC=45°.
(1)求證:EC平分∠AEB;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y=﹣x2+bx+c交x軸于點A(﹣1,0)和點B,交y軸于點C(0,2)
(1)求拋物線的表達式;
(2)點P為第一象限拋物線上一點,是否存在使△PBC面積最大的點P?若不存在,請說明理由;若存在,求出點P的坐標;
(3)點D坐標為(1,﹣1),連接AD,將線段AD繞平面內某一點旋轉180度得線段MN(點M、N分別與點A、D對應),使點M、N都在拋物線上,求點M、N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為慶祝重慶南開中學建校83周年暨校運動會,我校初二(21)班準備統(tǒng)一穿初一時期訂制的服裝參加運動會,分別需要增訂“英倫學院風”班服(250元/件)、“”運動褲(90元/件)、“少年的我”短袖恤(40元/件)共50件(三種服裝均有增訂),總花費6000元,且需要增訂“少年的我”短袖恤的件數(shù)最多,則需要增訂“”運動褲__________件.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為保障國慶70周年南口閱兵訓練基地全體人員的生活,需通過鐵路、公路兩種運輸方式運送生活物資.原計劃鐵路運輸物資的5倍是公路運輸?shù)?/span>8倍,實際鐵路運輸?shù)奈镔Y減少了15噸,公路運輸增加了15噸,且鐵路運輸物資的2倍比公路運輸?shù)?/span>3倍少60噸.
(1)原計劃鐵路、公路分別運輸多少噸物資到訓練基地?
(2)現(xiàn)采用微型集裝箱裝載這些物資,每個集裝箱裝滿后箱貨總重量為1.6噸,空箱重量為0.1噸.為增加集裝箱的載貨量將其進行改造,改造后每個集裝箱裝滿后箱貨總重量比改造前增加噸,空箱重量比改造前減少噸,其中.改造前的集裝箱每個裝滿后恰好裝下這些物資.若用改造后的集裝箱來裝載這些物資,改造后的集裝箱個數(shù)比改造前少用10個.設改造后的集裝箱最大載貨量總重量為噸,求關于的函數(shù)關系式以及的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校數(shù)學興趣小組,對函數(shù)y=|x﹣1|+1的圖象和性質進行了探究,探究過程如下:
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值如表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 5 | 4 | m | 2 | 1 | 2 | 3 | 4 | 5 | … |
其中m= .
(2)如圖,在平面直角坐標系xOy中,描出了上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象:
(3)根據(jù)畫出的函數(shù)圖象特征,仿照示例,完成下列表格中的函數(shù)變化規(guī)律:
序號 | 函數(shù)圖象特征 | 函數(shù)變化規(guī)律 |
示例1 | 在直線x=1的右側,函數(shù)圖象呈上升狀態(tài) | 當x>1時,y隨x的增大而增大 |
① | 在直線x=1的左側,函數(shù)圖象呈下降狀態(tài) |
|
示例2 | 函數(shù)圖象經(jīng)過點(﹣3,5) | 當x=﹣3時,y=5 |
② | 函數(shù)圖象的最低點是(1,1) |
|
(4)當2<y≤4時,x的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=-+b(b>0,b為常數(shù))的圖象與x軸、y軸分別相交于點A、B,半徑為4的⊙O與x軸正半軸交于點C,與y軸正半軸相交于點D.
(1)若直線AB與⊙O相切于弧CD上一點,求b的值;
(2)若直線AB與⊙O有兩個交點F、G.
①b為何值時,⊙O上有且只有3個點到直線AB的距離為2?并求出此時直線被⊙O所截的弦FG的長;
②是否存在這樣的b,使得∠GOF=90°?若存在,求出b的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認為其中錯誤的是( )
A.①②B.②③C.①③D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com