【題目】已知方程:①y=4x+2,②2x-3y=4.
(1)根據(jù)方程①填寫下表:
x | 2 | 1 | 0 | -1 | -2 |
y |
(2)根據(jù)方程②填寫下表:
x | 2 | 1 | 0 | -1 | -2 |
y |
(3)根據(jù)以上兩表中的數(shù)據(jù),求方程組的解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖1,將n個(gè)邊長為1的正方形并排組成矩形OABC,相鄰兩邊OA和OC分別落在x軸和y軸的正半軸上,設(shè)拋物線y=ax2+bx+c(a<0)過矩形頂點(diǎn)B、C.
(1)當(dāng)n=1時(shí),如果a=﹣1,試求b的值;
(2)當(dāng)n=2時(shí),如圖2,在矩形OABC上方作一邊長為1的正方形EFMN,使EF在線段CB上,如果M,N兩點(diǎn)也在拋物線上,求出此時(shí)拋物線的解析式;
(3)將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使得點(diǎn)B落到x軸的正半軸上,如果該拋物線同時(shí)經(jīng)過原點(diǎn)O. ①試求當(dāng)n=3時(shí)a的值;
②直接寫出a關(guān)于n的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為支援雅安災(zāi)區(qū),某學(xué)校計(jì)劃用“義捐義賣”活動(dòng)中籌集的部分資金用于購買A,B兩種型號(hào)的學(xué)習(xí)用品共1000件,已知A型學(xué)習(xí)用品的單價(jià)為20元,B型學(xué)習(xí)用品的單價(jià)為30元.
(1)若購買這批學(xué)習(xí)用品用了26000元,則購買A,B兩種學(xué)習(xí)用品各多少件?
(2)若購買這批學(xué)習(xí)用品的錢不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEC中,AB=DE.若添加條件后使得△ABC≌△DEC,則在下列條件中,不能添加的是( )
A. BC=EC,∠B=∠E B. BC=EC,AC=DC
C. ∠B=∠E,∠A=∠D D. BC=EC,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果a=(-99)0 , b=(-0.1)-1 , c=(- )-2 , 那么a , b , c三數(shù)的大小為( 。
A.a>b>c
B.c>a>b
C.a>c>b
D.
c>b>a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).
(1)求線段MN的長度;
(2)根據(jù)第(1)題的計(jì)算過程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長度;
(3)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P以2cm/s的速度沿AB向右運(yùn)動(dòng),終點(diǎn)為B,點(diǎn)Q以1cm/s的速度沿AB向左運(yùn)動(dòng),終點(diǎn)為A,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),求運(yùn)動(dòng)多少秒時(shí),C、P、Q三點(diǎn)有一點(diǎn)恰好是以另兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1,∠2互為補(bǔ)角,且∠3=∠B,
(1)求證:∠AFE=∠ACB
(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E),PE與CD相交于點(diǎn)O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設(shè)DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設(shè)DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結(jié)束】
25
【題目】某文教店老板到批發(fā)市場(chǎng)選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購進(jìn)A種套裝的數(shù)量是用75元購進(jìn)B種套裝數(shù)量的2倍.
(1)求A,B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?
(2)若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購進(jìn)B品牌的數(shù)量比購進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進(jìn)A品牌工具套裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=3x的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)A(1,m)和點(diǎn)B.
(1)求m的值和反比例函數(shù)的解析式.
(2)觀察圖象,直接寫出使正比例函數(shù)的值大于反比例函數(shù)的值的自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com