【題目】如圖1,在平面直角坐標(biāo)系中,直線AB與軸交于點(diǎn)A,與軸交于點(diǎn)B,與直線OC:交于點(diǎn)C.
(1)若直線AB解析式為,
①求點(diǎn)C的坐標(biāo);
②求△OAC的面積.
(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA=4,P、Q分別為線段OA、OE上的動(dòng)點(diǎn),連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個(gè)最小值;若不存在,說明理由.
【答案】(1)①C(4,4);②12;(2)存在,3
【解析】
試題(1)①聯(lián)立兩個(gè)函數(shù)式,求解即可得出交點(diǎn)坐標(biāo),即為點(diǎn)C的坐標(biāo);
②欲求△OAC的面積,結(jié)合圖形,可知,只要得出點(diǎn)A和點(diǎn)C的坐標(biāo)即可,點(diǎn)C的坐標(biāo)已知,利用函數(shù)關(guān)系式即可求得點(diǎn)A的坐標(biāo),代入面積公式即可;
(2)在OC上取點(diǎn)M,使OM=OP,連接MQ,易證△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三點(diǎn)共線,又AB⊥OP,可得∠AEO=∠CEO,即證△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面積為6,即可得出AM=3,AQ+PQ存在最小值,最小值為3.
(1)①由題意,
解得所以C(4,4);
②把代入得,,所以A點(diǎn)坐標(biāo)為(6,0),
所以;
(2)由題意,在OC上截取OM=OP,連結(jié)MQ
∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
當(dāng)A、Q、M在同一直線上,且AM⊥OC時(shí),AQ+MQ最。
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面積為12,所以AM=12÷4=3,
∴AQ+PQ存在最小值,最小值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD內(nèi)有一點(diǎn)F,F(xiàn)B與FC分別平分∠ABC和∠BCD,點(diǎn)E為矩形ABCD外一點(diǎn),連接BE,CE.現(xiàn)添加下列條件:①EB∥CF,CE∥BF;②BE=CE,BE=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF,其中能判定四邊形BECF是正方形的共有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,點(diǎn)為的中點(diǎn),如果點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)與點(diǎn)的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,與是否全等?請(qǐng)說明理由;
(2)若點(diǎn)與點(diǎn)的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能使與全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b-<0時(shí)x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,∠B=90°,AD=AB=4,BC=7,點(diǎn)E在BC上,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.
(1)求線段DC的長(zhǎng)度;
(2)求△FED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,點(diǎn)C的坐標(biāo)為(-18,0).
(1)求點(diǎn)B的坐標(biāo);
(2)若直線DE交梯形對(duì)角線BO于點(diǎn)D,交y軸于點(diǎn)E,且OE=4,∠OFE=45°,求直線DE的解析式;
(3)求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為1,等腰直角三角形ABC的頂點(diǎn)B的坐標(biāo)為(,0),CAB=90°, AC=AB,頂點(diǎn)A在⊙O上運(yùn)動(dòng).
(1)設(shè)點(diǎn)A的橫坐標(biāo)為x,△ABC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求出S的最大值與最小值;(2)當(dāng)直線AB與⊙O相切時(shí),求AB所在直線對(duì)應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點(diǎn),直線AD與經(jīng)過B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱軸交于M,點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線交于點(diǎn)Q.
(1)求經(jīng)過B、E、C三點(diǎn)的拋物線的解析式;
(2)判斷△BDC的形狀,并給出證明;當(dāng)P在什么位置時(shí),以P、O、C為頂點(diǎn)的三角形是等腰三角形,并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com