【題目】某班男同學(xué)身高情況如下表,則其中數(shù)據(jù)167cm

身高(cm)

170

169

168

167

166

165

164

163

人數(shù)()

1

2

5

8

6

3

3

2

A.是平均數(shù)B.是眾數(shù)但不是中位數(shù).

C.是中位數(shù)但不是眾數(shù)D.是眾數(shù)也是中位數(shù)

【答案】D

【解析】

根據(jù)定義進行計算:根據(jù)公式求出加權(quán)平均數(shù);找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù).

解:這30位男同學(xué)的平均身高為:(170×1+169×2+168×5+167×8+166×6+165×3+164×3+163×2)≈166(cm);

這組數(shù)據(jù)中,167出現(xiàn)的次數(shù)最多,故眾數(shù)為167 cm;
∵共有30人,∴第1516人身高的平均數(shù)為中位數(shù),
即中位數(shù)為:(167+167)÷2=167 cm.
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sinAOC=

(1)求反比例函數(shù)的解析式

(2)連接OB,求AOB的面積

(3) 根據(jù)圖象直接寫出當(dāng)時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示甲、乙兩名選手在一次自行車越野賽中,路程y(千米)隨時間x(分)變化的圖象.下面幾個結(jié)論:①比賽開始24分鐘時,兩人第一次相遇.②這次比賽全程是10千米.③比賽開始38分鐘時,兩人第二次相遇.正確的結(jié)論為_____(只填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線Myax2+bx+ca≠0)經(jīng)過A(﹣1,0),且頂點坐標(biāo)為B(0,1).

(1)求拋物線M的函數(shù)表達(dá)式;

(2)設(shè)Ft,0)為x軸正半軸上一點,將拋物線M繞點F旋轉(zhuǎn)180°得到拋物線M1

拋物線M1的頂點B1的坐標(biāo)為   ;

當(dāng)拋物線M1與線段AB有公共點時,結(jié)合函數(shù)的圖象,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長為a的大正方形紙板中挖去一個邊長為b的小正方形后,將其裁成四個相同的等腰梯形(如圖1),然后拼成一個平行四邊形(如圖2)。那么通過計算兩個圖形的陰影部分的面積,可以驗證成立的公式是( )

Aa2b2=(ab)2

B(a+b)2="a+2ab+b"

C(ab)2=a22ab+b2

Da2b2=(ab)(a+b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OBCDOB邊在x軸上,ODy軸上,把OBC沿OC折疊得到OCE,OECD交于點F.

(1)求證:OFCF

(2)若OD=4,OB=8,寫出OE所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABBC,AD2+CD22AB2CDAD

1)求證:ABBC

2)若AB3CD,AD17,求四邊形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,菱形OABC的頂點Ax軸的正半軸上,頂點C的坐標(biāo)為(1,).

(1)求圖象過點B的反比例函數(shù)的解析式;

(2)求圖象過點A,B的一次函數(shù)的解析式;

(3)在第一象限內(nèi),當(dāng)以上所求一次函數(shù)的圖象在所求反比例函數(shù)的圖象下方時,請直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在OBC中,邊BC的垂直平分線交BOC的平分線于點D,連接DB,DC,過點DDFOC于點F.

(1)BOC60°,求BDC的度數(shù);

(2)BOC,則BDC ;(直接寫出結(jié)果)

(3)直接寫出OBOC,OF之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案