【題目】直線y=x+m和拋物線y=x2+bx+c都經(jīng)過點(diǎn)A(1,0),B(3,2).
(1)求m的值和拋物線的解析式;
(2)求方程x2+bx+c=x+m的解.(直接寫出答案)
【答案】(1)m=﹣1,y=x2﹣3x+2;(2)x1=1,x2=3.
【解析】
試題分析:(1)先把A點(diǎn)坐標(biāo)代入y=x+m可求出m的值,然后把A點(diǎn)和B點(diǎn)坐標(biāo)代入y=x2+bx+c得到關(guān)于b、c的方程組,再解方程方程組求出b、c即可得到拋物線解析式
(2)方程x2+bx+c=x+m的解就是直線y=x+m和拋物線y=x2+bx+c的交點(diǎn)的橫坐標(biāo).
解:(1)把A(1,0)代入y=x+m得1+m=0,解得m=﹣1,
把A(1,0),B(3,2)代入y=x2+bx+c得,解得,
所以拋物線解析式為y=x2﹣3x+2;
(2)方程x2+bx+c=x+m的解為x1=1,x2=3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0,a、b、c為常數(shù))的圖象如圖,則方程ax2+bx+c=m有實(shí)數(shù)根的條件是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求31+32+33+34+35+36的值
可以設(shè)S=31+32+33+34+35+36(1)
則3S=32+33+34+35+36+37(2)
用(2)﹣(1)得
3S﹣S=37﹣31
所以2S=37﹣3
即 所以31+32+33+34+35+36=
仿照以上推理,計(jì)算51+52+53+54+55+…+52015.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O為△ABC的外接圓,請僅用無刻度的直尺,根據(jù)下列條件分別在圖1,圖2中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法).
(1)如圖1,AC=BC;
(2)如圖2,直線l與⊙O相切于點(diǎn)P,且l∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校田徑運(yùn)動會上,小明和其他三名選手參加100米預(yù)賽,賽場共設(shè)1,2,3,4四條跑道,選手以隨機(jī)抽簽的方式?jīng)Q定各自的跑道.若小明首先抽簽,則小明抽到1號跑道的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1.
(2)寫出A1,B1,C1的坐標(biāo)(直接寫出答案),A1 ;B1 ;C1 .
(3)△A1B1C1的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=20°,∠AOE=100°,OB平分∠AOC,OD平分∠AOE.
(1)求∠COD的度數(shù);
(2)若以O(shè)為觀察中心,OA為正東方向,射線OD的方向角是 ;
(3)若∠AOE的兩邊OA、OE分別以每秒5°、每秒3°的速度,同時繞點(diǎn)O逆時針方向旋轉(zhuǎn),當(dāng)OA回到原處時,OA、OE停止運(yùn)動,則經(jīng)過幾秒,∠AOE=42°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com