【題目】請閱讀下列材料:
我們可以通過以下方法求代數(shù)式x2+6x+5的最小值.
x2+6x+5=x2+2x3+32﹣32+5=(x+3)2﹣4,
∵(x+3)2≥0
∴當(dāng)x=﹣3時,x2+6x+5有最小值﹣4.
請根據(jù)上述方法,解答下列問題:
(Ⅰ)x2+4x﹣1=x2+2x2+22﹣22﹣1=(x+a)2+b,則ab的值是_____;
(Ⅱ)求證:無論x取何值,代數(shù)式x2+2x+7的值都是正數(shù);
(Ⅲ)若代數(shù)式2x2+kx+7的最小值為2,求k的值.
【答案】﹣10
【解析】
(Ⅰ)根據(jù)配方的過程求得a、b的值代入求值即可;
(Ⅱ)先利用完全平方公式配方,再根據(jù)偶次方非負(fù)數(shù)的性質(zhì)列式求解;
(Ⅲ)先利用完全平方公式配方,再根據(jù)偶次方非負(fù)數(shù)的性質(zhì)列式求解.
(Ⅰ)∵x2+4x﹣1=x2+2x2+22﹣22﹣1=(x+2)2﹣5=(x+a)2+b,
∴a=2,b=﹣5,
∴ab=2×(﹣5)=﹣10.
故答案是:﹣10;
(Ⅱ)證明:x2+2x+7=x2+2x+()2﹣()2+7=(x+)2+1.
∵(x+)2≥0,
∴x2+2x+7的最小值是1,
∴無論x取何值,代數(shù)式x2+2x+7的值都是正數(shù);
(Ⅲ)2x2+kx+7=(x)+2x+(k)2﹣(k)2+7=(x+k)2﹣k2+7.
∵(x+k)2≥0,
∴(x+k)2﹣k2+7的最小值是﹣k2+7,
∴﹣k2+7=2,
解得k=±2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠ACB=90°,BC=5,點 P 在邊 AB 上,連接 CP.將△BCP 沿直線CP 翻折后,點 B 恰好落在邊 AC 的中點處,則點 P 到 AC 的距離是( )
A. 2.5 B. C. 3.5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,進(jìn)價是20元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是30元時,銷售量是500件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(元) | x |
銷售量y(件) | |
銷售玩具獲得利潤w(元) |
(2)在(1)問條件下,若商場獲得了8000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元.
(3)在(1)問條件下,若玩具車規(guī)定該品牌玩具銷售單價不低于35元,且商場要完成不少于350件的銷售任務(wù),求商場銷售該品牌服裝獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.
(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時能相遇?
(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C為數(shù)軸上的三點,動點A、B同時從原點出發(fā),動點A每秒運動x個單位,動點B每秒運動y個單位,且動點A運動到的位置對應(yīng)的數(shù)記為a,動點B運動到的位置對應(yīng)的數(shù)記為b,定點C對應(yīng)的數(shù)為8.
(1)若2秒后,a、b滿足|a+8|+(b﹣2)2=0,則x= ,y= ,并請在數(shù)軸上標(biāo)出A、B兩點的位置.
(2)若動點A、B在(1)運動后的位置上保持原來的速度,且同時向正方向運動z秒后使得|a|=|b|,使得z= .
(3)若動點A、B在(1)運動后的位置上都以每秒2個單位向正方向運動繼續(xù)運動t秒,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,點A與點B之間的距離為AB,且AC+BC=1.5AB,則t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a使關(guān)于x的不等式組 有且僅有四個整數(shù)解,且使關(guān)于y的分式方程 + =2有非負(fù)數(shù)解,則所以滿足條件的整數(shù)a的值之和是( )
A.3
B.1
C.0
D.﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A的坐標(biāo)為(-3,-4),點B的坐標(biāo)為(5,0).
(1)求證:OA=OB.
(2)求△AOB的面積.
(3)求原點O到AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式>x﹣1.
(1)當(dāng)m=1時,求該不等式的解集;
(2)m取何值時,該不等式有解,并求出解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),已點A(3,0)、B(-5,3),將點A向左平移6個單位到達(dá)C點,將點B向下平移6個單位到達(dá)D點.
(1)寫出C點、D點的坐標(biāo):C __________,D ____________ ;
(2)把這些點按A-B-C-D-A順次連接起來,這個圖形的面積是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com