【題目】對于題目:“如圖1,平面上,正方形內(nèi)有一長為12 、寬為6 的矩形,它可以在正方形的內(nèi)部及邊界通過移轉(即平移或旋轉)的方式,自由地從橫放移轉到豎放,求正方形邊長的最小整數(shù)甲、乙、丙作了自認為邊長最小的正方形,先求出該邊長,再取最小整數(shù)

甲:如圖2,思路是當為矩形對角線長時就可移轉過去;結果取n=14

乙:如圖3,思路是當為矩形外接圓直徑長時就可移轉過去;結果取n=14

丙:如圖4,思路是當為矩形的長與寬之和的倍時就可移轉過去;結果取n=13

甲、乙、丙的思路和結果均正確的是___________

【答案】甲、乙

【解析】

根據(jù)矩形長為12寬為6,可得矩形的對角線長為,由矩形在該正方形的內(nèi)部及邊界通過平移或旋轉的方式,自由地從橫放變換到豎放,可得該正方形的邊長不小于,進而可得正方形邊長的最小整數(shù)n的值.

∵矩形長為12寬為6,
∴矩形的對角線長為:,

∵矩形在該正方形的內(nèi)部及邊界通過平移或旋轉的方式,自由地從橫放變換到豎放,
∴該正方形的邊長不小于,

,

∴該正方形邊長的最小整數(shù)n14
故甲的思路正確,長方形對角線最長,只要對角線能通過就可以,結果也正確;

乙的思路正確,長方形對角線就是圓的直徑最長,只要圓能通過就可以,結果也正確;
丙的思路錯誤,長方形對角線最長,只要對角線能通過才可以,故丙的思路與結果都錯誤;

故答案為:甲、乙.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2019423日是第二十四個世界讀書日.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:

1)求本次比賽獲獎的總人數(shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中二等獎所對應扇形的圓心角度數(shù);

3)學校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加世界讀書日宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線軸的一個交點為點,與軸的交點為點,拋物線的對稱軸軸交于點,與線段交于點,點是對稱軸上一動點.

1)點的坐標是________,點的坐標是________;

2)是否存在點,使得相似?若存在,請求出點的坐標,若不存在,請說明理由;

3)如圖2,拋物線的對稱軸向右平移與線段交于點,與拋物線交于點,當四邊形是平行四邊形且周長最大時,求出點的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年某企業(yè)按餐廚垃圾處理費25/噸,建筑垃圾處理費16/噸標準,共支付餐廚和建筑垃圾處理費5200元,從2014年元月起,收費標準上調(diào)為:餐廚垃圾處理費100/噸,建筑垃圾處理費30/噸,若該企業(yè)2014年處理的這兩種垃圾數(shù)量與2013年相比沒有變化,就要多支付垃圾處理費8800元,

1)該企業(yè)2013年處理的餐廚垃圾和建筑垃圾各多少噸?

2)該企業(yè)計劃2014年將上述兩種垃圾處理量減少到240噸,且建筑垃圾處理費不超過餐廚垃圾處理量的3倍,則2014年該企業(yè)最少需要支付這兩種垃圾處理費共多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學小組的兩位同學準備測量兩幢教學樓之間的距離,如圖,兩幢教學樓AB和CD之間有一景觀池(AB⊥BD,CD⊥BD),一同學在A點測得池中噴泉處E點的俯角為42°,另一同學在C點測得E點的俯角為45°(點B,E,D在同一直線上),兩個同學已經(jīng)在學校資料室查出樓高AB=15m,CD=20m,求兩幢教學樓之間的距離BD.

(結果精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,cm,cm,點的中點,點EAB的中點.點AB邊上一動點,從點B出發(fā),運動到點A停止,將射線DM繞點順時針旋轉度(其中),得到射線DN,DN與邊ABAC交于點N.設、兩點間的距離為cm,兩點間的距離為cm

小濤根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.

下面是小濤的探究過程,請補充完整.

1)列表:按照下表中自變量x的值進行取點、畫圖、測量,分別得到了的幾組對應值:

x/cm

0

0.3

0.5

1.0

1.5

1.8

2.0

2.5

3.0

3.5

4.0

4.5

4.8

5.0

y/cm

2.5

2.44

2.42

2.47

2.79

2.94

2.52

2.41

2.48

2.66

2.9

3.08

3.2

請你通過測量或計算,補全表格;

2)描點、連線:在平面直角坐標系中,描出補全后的表格中各組數(shù)值所對應的點,并畫出函數(shù)關于的圖象.

3)結合函數(shù)圖象,解決問題:當時,的長度大約是   cm.(結果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB與⊙O相切于點A,OB及其延長線交⊙OCD兩點,F為劣弧AD上一點,且滿足∠FDC=2CAB,延長DFCA的延長線于點E

(1)求證:DE=DC

(2)tanE=2,BC=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】紅樹林學校在七年級新生中舉行了全員參加的防溺水安全知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從三個班中各隨機取10名同學的成績(單位:分),收集數(shù)據(jù)如下:

1班:9070,80,8080,80,80,90,80,100;

2班:70,8080,80,6090,90,90100,90

3班:90,6070,80,8080,80,90,100,100

整理數(shù)據(jù):

分數(shù)

人數(shù)

班級

60

70

80

90

100

1

0

1

6

2

1

2

1

1

3

1

3

1

1

4

2

2

分析數(shù)據(jù):

平均數(shù)

中位數(shù)

眾數(shù)

1

83

80

80

2

83

3

80

80

根據(jù)以上信息回答下列問題:

1)請直接寫出表格中的值;

2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由;

3)為了讓學生重視安全知識的學習,學校將給競賽成績滿分的同學頒發(fā)獎狀,該校七年級新生共570人,試估計需要準備多少張獎狀?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過點,直線軸交于點為二次函數(shù)圖象上任一點.

求這個二次函數(shù)的解析式;

若點在直線的上方,過分別作軸的垂線,交直線于不同的兩點(的左側),求周長的最大值;

是否存在點使得是以為直角邊的直角三角形?如果存在,直接寫出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案