【題目】反比例函數(shù)(a>0,a為常數(shù))和在第一象限內的圖象如圖所示,點M在的圖象上,MC⊥x軸于點C,交的圖象于點A;MD⊥y軸于點D,交的圖象于點B,當點M在的圖象上運動時,以下結論:
①S△ODB=S△OCA;
②四邊形OAMB的面積不變;
③當點A是MC的中點時,則點B是MD的中點.
其中正確結論的個數(shù)是( )
A.0 B.1 C.2 D.3
科目:初中數(shù)學 來源: 題型:
【題目】公司有330臺機器需要一次性運送到某地,計劃租用甲、乙兩種貨車共8輛,已知每輛甲種貨車一次最多運送機器45臺、租車費用為400元,每輛乙種貨車一次最多運送機器30臺、租車費用為280元
(1)設租用甲種貨車x輛(x為非負整數(shù)),試填寫表格.
表一:
表二:
(2)給出能完成此項運送任務的最節(jié)省費用的租車方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)報道,2015年某市城鎮(zhèn)非私營單位就業(yè)人員年平均工資超過60500元,將數(shù)60500用科學計數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,BC=AC,∠BCA=90°,P為直線AC上一點,過點A作AD⊥BP于點D,交直線BC于點Q.
(1)如圖1,當P在線段AC上時,求證:BP=AQ;
(2)如圖2,當P在線段CA的延長線上時,(1)中的結論是否成立?(填“成立”或“不成立”)
(3)在(2)的條件下,當∠DBA=度時,存在AQ=2BD,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連結AF,CE,則下列結論:①CF=AE;②OE=OF;③DE=BF;④圖中共有四對全等三角形.其中正確結論的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數(shù)y=kx+b的圖象上.
(1)k的值是 ;
(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數(shù)圖象交于C,D兩點(點C在第二象限內),過點C作CE⊥x軸于點E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若,則b的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A1,A2,…,An均在直線上,點B1,B2,…,Bn均在雙曲線上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點An的橫坐標為an(n為正整數(shù)).若,則a2015= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育館計劃從一家體育用品商品一次性購買若干個排球和籃球(每個排球的價格都相同,每個籃球的價格都相同),雙方洽談的信息如下:
信息一:購買1個排球和2個籃球共需210元;
信息二:購買2個排球和3個籃球共需340元;
信息三:購買排球和籃球共50個,總費用不超過3200元,且購買排球的個數(shù)少于30個.
(1)每個排球和每個籃球的價格各是多少元?
(2)該體育館有幾種購買方案?應選擇哪種購買方案可使總費用最低?最低費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 OD 是∠AOB 的角平分線,C 為 OD 上一點.
(1)過點 C 畫直線 CE∥OB,交 OA 于 E;過點 C 畫直線 CF∥OA,交 OB 于 F;過點 C 畫線段 CG⊥OA,垂足為 G.
(2)根據(jù)畫圖回答問題:
①線段的長度就是點C到OA的距離;
②比較大小:CECG(填“>”或“=”或“<”);
③通過度量比較∠AOD與∠ECO的關系是:∠AOD∠ECO(填“>”或“=”或“<”);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com