【題目】在四邊形ABCD中,點(diǎn)E為AB邊上的一點(diǎn),點(diǎn)F為對角線BD上的一點(diǎn),且EF⊥AB.
(1)若四邊形ABCD為正方形.
①如圖①,請直接寫出AE與DF的數(shù)量關(guān)系______________;
②將△EBF繞點(diǎn)B逆時針旋轉(zhuǎn)到圖②所示的位置,連接AE,DF,猜想AE與DF的數(shù)量關(guān)系并說明理由;
(2)如圖③,若四邊形ABCD為矩形,BC=mAB,其他條件都不變,將△EBF繞點(diǎn)B逆時針旋轉(zhuǎn)α(0°<α<90°)得到△E′BF′,連接AE′,DF′,請在圖③中畫出草圖,并求出AE′與DF′的數(shù)量關(guān)系.
【答案】(1)①DF= AE
②DF=AE.理由見解析; (2) DF′= AE′.
【解析】試題分析:
(1)①由四邊形ABCD是正方形易得BD=AB,由EF∥AD可得,從而可DF=AE;
②由旋轉(zhuǎn)的性質(zhì)結(jié)合題意可證△ABE∽△DBF可得,從而可得DF=AE;
(2)畫圖如下,由四邊形ABCD為矩形,可得AD=BC=mAB,由勾股定理可得BD==AB;易證△BEF∽△BAD,可得,因此=.
由旋轉(zhuǎn)性質(zhì)結(jié)合題意可證△ABE′∽△DBF′,由此可得==,
∴DF′= AE′.
試題解析:
(1)①DF= AE
②DF=AE.理由如下:
∵△EBF繞點(diǎn)B逆時針旋轉(zhuǎn)到圖②所示的位置,
∴∠ABE=∠DBF.
∵, ,
∴ ,
∴△ABE∽△DBF,
∴ ,即DF= AE.
(2)如圖所示,∵四邊形ABCD為矩形,
∴AD=BC=mAB,
∴BD==AB.
∵EF⊥AB,
∴EF∥AD,
∴△BEF∽△BAD,
∴,
∴=.
∵△EBF繞點(diǎn)B逆時針旋轉(zhuǎn)α(0°<α<90°)得到△E′BF′,
∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,
∴==,
∴△ABE′∽△DBF′,
∴==,即DF′= AE′.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),CD平分∠ACB交⊙O于點(diǎn)D.
(1)AD與BD相等嗎?為什么?
(2)若AB=10,AC=6,求CD的長;
(3)若P為⊙O上異于A、B、C、D的點(diǎn),試探究PA、PD、PB之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個圖形經(jīng)過旋轉(zhuǎn),有以下說法:
①對應(yīng)線段平行;②對應(yīng)線段相等;③對應(yīng)角相等;④圖形的形狀和大小都沒有發(fā)生變化.其中正確的說法是( )
A. ①②③B. ①②④
C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.動點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒3cm的速度向定點(diǎn)A運(yùn)動,同時動點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒2cm的速度向點(diǎn)B運(yùn)動,運(yùn)動時間為t秒(0<t<),連接MN.
(1)若△BMN與△ABC相似,求t的值;
(2)連接AN,CM,若AN⊥CM,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上距離原點(diǎn)2個單位長度的點(diǎn)所表示的數(shù)是( )
A.2
B.﹣2
C.2或﹣2
D.1或﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com