如圖,AB為⊙O的直徑,弦CD與AB相交于E,DE=EC,過點B的切線與AD的延長線交于F,過E作EG⊥BC于G,延長GE交AD于H.
(1)求證:AH=HD;
(2)若cos∠C=
4
5
,DF=9,求⊙O的半徑.
(1)證明:∵AB為⊙O的直徑,DE=EC,
∴AB⊥CD,
∴∠C+∠CBE=90°,
∵EG⊥BC,
∴∠C+∠CEG=90°,
∴∠CBE=∠CEG,
∵∠CBE=∠CDA,∠CEG=∠DEH,
∴∠CDA=∠DEH,
∴HD=EH,
∵∠A+∠ADC=90°,∠AEH+∠DEH=90°,
∴AH=EH,
∴AH=HD;

(2)∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠BDF=90°,
∵BF是⊙O的切線,
∴∠DBF=∠C,
∵cos∠C=
4
5
,DF=9,
∴tan∠DBF=
3
4

∴BD=
DF
tan∠DBF
=12,
∵∠A=∠C,
∴sin∠A=
3
5

∴AB=
BD
sin∠A
=20,
∴⊙O的半徑為10.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知⊙O的半徑OA=
5
,弦AB=4,點C在弦AB上,以點C為圓心,CO為半徑的圓與線段OA相交于點E.
(1)求cosA的值;
(2)設AC=x,OE=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當點C在AB上運動時,⊙C是否可能與⊙O相切?如果可能,請求出當⊙C與⊙O相切時的AC的長;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=120°,AC=BC,AB=6,O為AB的中點,且以O為圓心的半圓與AC,BC分別相切于點D,E;
(1)求半圓O的半徑;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在以點O為圓心的兩個同心圓中,大圓的半徑OA與小圓相交于點B,AC與小圓相切于點C,OC的延長線與大圓相交于點D,AC與BD相交于點E.
求證:(1)BD是小圓的切線;
(2)CE:AE=OC:OD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PA、PB是⊙O的切線,切點分別是A、B,若∠APB=60°,PA=4.則⊙O的半徑是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖,∠ACB=90°,以AC為直徑的⊙O交AB于D點,過D作⊙O的切線交BC于E點,EF⊥AB于F點,連OE交DC于P,則下列結論,其中正確的有(  )
①BC=2DE;②OEAB;③DE=
2
PD;④AC•DF=DE•CD.
A.①②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,O是正方形ABCD的對角線BD上一點,⊙O與邊AB,BC都相切,點E,F(xiàn)分別在AD,DC上,現(xiàn)將△DEF沿著EF對折,折痕EF與⊙O相切,此時點D恰好落在圓心O處.若DE=2,則正方形ABCD的邊長是(  )
A.3B.4C.2+
2
D.2
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA、PB切⊙O于A、B,若∠APB=60°,⊙O半徑為3,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,分別以AB,AC為直徑在△ABC外作半圓O1和半圓O2,其中O1和O2分別為兩個半圓的圓心.F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.

(1)如圖一,連接O1F,O1D,DF,O2F,O2E,EF,證明:△DO1F≌△FO2E;
(2)過點A分別作半圓O1和半圓O2的切線,交BD的延長線和CE的延長線于點P和點Q,連接PQ,①如圖二,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;②如圖三,若連接FA,猜想PQ與FA的位置關系,并說明你的結論.

查看答案和解析>>

同步練習冊答案